RAS Earth ScienceГеохимия Geochemistry International

  • ISSN (Print) 0016-7525
  • ISSN (Online) 3034-4956

PHOSPHATES IN THE IMPACT ASSOCIATIONS OF THE CHELYABINSK METEORITE

PII
S3034495625090023-1
DOI
10.7868/S3034495625090023
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 9
Pages
692-715
Abstract
Na-Fe- and Na-Ca-Mg-Fe-phosphates were found in the impact melt associations of the Chelyabinsk meteorite (Chebarkul fragment). They drastically differ in composition from phosphates of the initial chondrite (chlorapatite, merrillite). Chladniite NaCaMgFeMn(PO) and merrillite-like phase NaCaMgFeMn(PO) were observed in silicate part in quenched interstitial groundmass between olivine grains; merrillite and chlorapatite are rare here. The spongy metal-sulfide aggregate from large voids and metal-sulfide blebs in silicate part contain Na-Fe-phosphate globules. They consist of sarcopside and graftonite (Fe, Mn)(PO), galileiite Na(Fe, Mn)(PO), xenophyllite Na(Fe, Mn)(PO) and unidentified Na-Fe-phosphate Na(Fe, Mn)(PO), sometimes chromite-2. Dendritic-skeletal growth of crystals, evidencing about very rapid quenching, is clearly fixed in all associations of the impact melt (silicate part, vugs, metal-sulfide aggregate, metal-sulfide blebs, and phosphate globules). The following crystallization sequence is revealed in the Na-Fe-phosphate globules: chromite-2 → sarcopside/ graftonite → galileiite → xenophyllite. It is suggested that their formation was due to separation of Na-Fe-phosphate liquid from homogenous Na-P-Cr-O-dopped Fe-Ni-metal-sulfide melt. Crystallization of Na-Ca-Mg-Fe-phosphates occurred without participation of any liquation processes; and directly from silicate melt. The paper provides data on chemical composition and Raman spectroscopy for all studied phosphates, as well as for the key minerals of the impact melt associations of the Chelyabinsk meteorite.
Keywords
саркопсид графтонит галлюнит ксенофиллит хладниит фосфатные глобулы Fe-Ni-металл троилит импактный расплав метеорит Челябинск
Date of publication
30.04.2025
Year of publication
2025
Number of purchasers
0
Views
30

References

  1. 1. Анфилогов В.Н., Белогуб Е.В., Блинов И.А., Еремяшев В.Е., Кабанова Л.Я., Лебедева С.М., Лонщакова Г.Ф., Хворов П.В. (2013) Петрография, минералогия и строение метеорита «Челябинск». Литосфера. 13 (3), 118–129.
  2. 2. Бадюков Д.Д., Райтала Й., Костама П., Игнатьев А. В. (2015) Метеорит Челябинск: ударный метаморфизм, импактный расплав и ударная адиабата. Петрология. 23 (2), 115–128.
  3. 3. Бадюков Д.Д., Дудоров А.Е. (2013) Фрагменты Челябинского метеоритного дождя: распределение по массам, размерам и возможная масса максимального фрагмента. Геохимия. 51 (7), 643–646.
  4. 4. Badyukov D.D., Dudorov A.E. (2013) Fragments of the Chelyabinsk meteorite shower: distribution of masses and sizes and constraints on the mass of the largest fragment. Geochem. Int. 51 (7), 583–586.
  5. 5. Берзин С.В., Ерохин Ю.В., Иванов К.С., Хиллер В.В. (2013) Особенности минерального и геохимического состава метеорита «Челябинск». Литосфера. 13 (3), 106–117.
  6. 6. Богомолов Е.С., Скублов С.Г., Марин Ю.Б., Степанов С.Ю., Антонов А.В., Галанкина О.Л. (2013) Sm–Nd возраст и изотопная геохимия минералов метеорита Челябинск. ДАH. 452 (5), 548–553.
  7. 7. Галимов Э.М., Колотов В.П., Назаров М.А., Костицын Ю.А., Кубракова И.В., Кононкова Н.Н., Рощина И.А., Алексеев В.А., Кашкаров Л.Л., Бадюков Д.Д., Севастьянов В.С. (2013) Результаты вещественного анализа метеорита Челябинск. Геохимия. 57 (7), 580–598.
  8. 8. Galimov E.M., Kolotov V.P., Nazarov M.A., Kostitsyn Yu.A., Kubrakova I.V., Kononkova N.N., Roshchina I.A., Alexeev V.A., Kashkarov L.L., Badyukov D.D., Sevast’yanov V.S. (2013) Analytical results for the material of the Chelyabinsk meteorite. Geochem. Int. 51 (7), 522–539.
  9. 9. Дудоров А.Е., Майер А.Е. (2014) Движение и разрушение Челябинского метеороида в атмосфере. Вест. ЧГУ. 19 (1), Физика, 47–57.
  10. 10. Коротеев В.А., Берзин С.В., Ерохин Ю.В., Иванов К.С., Хиллер В.В. (2013) Состав и структура метеорита Челябинск. ДАН. 451, 446–450.
  11. 11. Петрова Е.В., Гроховский В.И., Кохоут Т., Муфтахетдинова Р.Ф., Яковлев Г.А. (2019) Ударно-волновой эксперимент с метеоритом Челябинск LL5: параметры эксперимента и структура ударно-преобразованного вещества. Геохимия. 64 (8), 859–868.
  12. 12. Petrova E.V., Grokhovsky V.I., Kohout T., Muftakhetdinova R.F., Yakovlev G.A. (2019) Shock-wave experiment with the Chelyabinsk LL5 meteorite: experimental parameters and the texture of the shock-affected material. Geochem. Int. 57 (8), 923–930.
  13. 13. Шарыгин В.В. (2016) Фосфатные включения в когените из «черных блоков» террикона шахты 45 г. Копейска, Челябинский угольный бассейн. Минералогия техногенеза. 17, 34–54.
  14. 14. Шарыгин В.В. (2022) Высоконатровые фосфатные и силикатные включения в троилитовом нодуле железного метеорита Дарьинское (IIC). Геохимия. 67 (12), 1216–1232.
  15. 15. Sharygin V.V. (2022) Sodium-rich phosphate and silicate inclusions in the troilite nodule of the Darinskoe iron meteorite (IIC). Geochem. Int. 60 (12), 1221–1236.
  16. 16. Шарыгин В.В. (2023) Минеральные ассоциации метеорита Челябинск: минералогия темной литологии // Минералы: строение, свойства, методы исследования – 2023. Екатеринбург: ИГГ УрО РАН, 13, с. 310–313.
  17. 17. Шарыгин В.В., Карманов Н.С., Подгорных Н.М., Томиленко А.А. (2014а) Минералогия и петрография «проплавленного» фрагмента метеорита Челябинск. Метеорит Челябинск – год на Земле – 2014. Челябинск: ЧГКМ, с. 637–653.
  18. 18. Шарыгин В.В., Тимина Т.Ю., Карманов Н.С., Томиленко А.А., Подгорных Н.М. (2014б) Минеральные ассоциации в коре оплавления фрагментов метеорита Челябинск. Метеорит Челябинск – год на Земле – 2014. Челябинск: ЧГКМ, с. 654–666.
  19. 19. Шарыгин В.В., Яковлев Г.А., Карманов Н.С., Гроховский В.И., Подгорных Н.М. (2015) Минеральные ассоциации в пустотах темной литологии метеорита Челябинск (чебаркульский фрагмент). Онтогения, филогения, система минералогии – 2015. Миасс: ИМин УрО РАН, с. 205–217.
  20. 20. Andronikov A.V., Andronikova I.E., Hill D.H. (2015) Impact history of the Chelyabinsk meteorite: Electron microprobe and LA-ICP-MS study of sulfides and metals. Planet. Space Sci. 118, 54–78.
  21. 21. Anzures B.A., McCubbin F.M., Erickson T.M., Jakubek R.S., Fries M.D., Le L. (2024) First widespread occurrence of rare phosphate chladniite in a meteorite, winonaite Graves Nunataks (GRA) 12510: implications for phosphide – phosphate redox buffered genesis in meteorites. Am. Mineral. 109 (9), 1513–1522.
  22. 22. Atencio D., Azzi A. (2020). Cerite: A new supergroup of minerals and cerite-(La) renamed ferricerite-(La). Mineral. Mag. 84 (6), 928–931.
  23. 23. Beard S.P., Swindle T.D., Lapen T.J., Kring D.A. (2022) Ar-Ar and U-Pb ages of Chelyabinsk and a re-evaluation of its impact chronology. Meteor. Planet. Sci. 57 (12), 2276–2288.
  24. 24. Bild R.W. (1974) New occurrences of phosphates in iron meteorites. Contrib. Mineral. Petrol. 45, 91–98.
  25. 25. Britvin S.N., Krivovichev S.V., Obolonskaya E.V., Vlasenko N.S., Bocharov V.N., Bryukhanova V.V. (2020) Xenophyllite, Na4Fe7(PO4)6, an exotic meteoritic phosphate: new mineral description, Na-ions mobility and electrochemical implications. Minerals. 10, 300.
  26. 26. Borovicka J., Spurny P., Brown P., Wiegert P., Kalenda P., Clark D., Shrbeny L. (2013) The trajectory, structure and origin of the Chelyabinsk asteroidal impactor. Nature. 503 (7475), 235–237.
  27. 27. Burba C.M., Frech R. (2006) Vibrational spectroscopic investigation of structurally related LiFePO4, NaFePO4, FePO4 compounds. Spectrochim. Acta Part A. 65, 44–50.
  28. 28. Calvo C. (1968) The crystal structure of graftonite. Am. Mineral. 53, 742–750.
  29. 29. Chen M., Xie X. (1996) Na behavior in shock-induced melt phase of the Yanzhuang (H6) chondrite. Eur. J. Mineral. 8, 325–333.
  30. 30. D’Orazio M., Folco L., Chaussidon M., Rochette P. (2009) Sahara 03505 sulfide-rich iron meteorite: Evidence for efficient segregation of sulfide-rich metallic melt during high-degree impact melting of an ordinary chondrite. Meteorit. Planet. Sci. 44 (2), 221–231.
  31. 31. Floss C. (1999) Fe, Mg, Mn-bearing phosphates in the GRA95209 meteorite: Occurrences and mineral chemistry. Am. Mineral. 84, 1354–1359.
  32. 32. Grew E.S., Armbruster T., Medenbach O., Yates M.G., Carson C.J. (2007) Chopinite, [(Mg, Fe)3□](PO4)2, a new mineral isostructural with sarcopside, from a fluorapatite segregation in granulite-facies paragneiss, Larsemann Hills, Prydz Bay, East Antarctica. Eur. J. Mineral. 19, 229–245.
  33. 33. Grew E.S., Yates M.G., Beane R.J., Floss C., Gerbi C. (2010) Chopinite-sarcopside solid solution, [(Mg, Fe)3□](PO4)2, in GRA95209, a transitional acapulcoite: Implications for phosphate genesis in meteorites. Am. Mineral. 95, 260–272.
  34. 34. Grokhovsky V.I., Brusnitsyna E.V., Yakovlev G.A. (2015) Haxonite in Chelyabinsk LL5 meteorite. Meteorit. Planet. Sci. 50 (S1), 5272.
  35. 35. Grokhovsky V.I., Muftakhetdinova R.F., Yakovlev G.A., Brusnitsyna E.V., Petrova E.V. (2020) Post-impact metamorphism of the Chelyabinsk meteorite in shock experiment. Planet. Space Sci. 192, 105050.
  36. 36. Hatert F., Grew E.S., Vignola P., Rotiroti N., Nestola F., Keller P., Baijot M., Bruni Ya., Fransolet A.-M., Dal Bo F., Depret M. (2021) Crystal chemistry and nomenclature of fillowite-type phosphates. Can. Mineral. 59 (4), 781–796.
  37. 37. Jones R.H., McCubbin F.M, Dreeland L., Guan Y., Burger P.V., Shearer C.K. (2014) Phosphate minerals in LL chondrites: A record of the action of fluids during metamorphism on ordinary chondrite parent bodies. Geochim. Cosmochim. Acta. 132, 120–140.
  38. 38. Kaeter D., Ziemann M.A., Bottger U., Weber I., Hecht L., Voropaev S.A., Korochantsev A.V., Kocherov A.V. (2018) The Chelyabinsk meteorite: new insights from a comprehensive electron microscopy and Raman spectroscopy study with evidence for graphite in olivine of ordinary chondrites. Meteorit. Planet. Sci. 53, 416–432.
  39. 39. Karwowski Ł., Kusz J., Muszyński A., Kryza R., Sitarz M., Galuskin E.V. (2015) Moraskoite, Na2Mg(PO4)F, a new mineral from the Morasko IAB-MG iron meteorite (Poland). Mineral. Mag. 79, 387–398.
  40. 40. Karwowski Ł., Kryza R., Muszyński A., Kusz J., Helios K., Drożdżewski P., Galuskin E. V. (2016) Czochralskiite, Na4Ca3Mg(PO4)4, a second new mineral from the Morasko IAB-MG iron meteorite (Poland). Eur. J. Mineral. 28, 890–899.
  41. 41. Kohout T., Gritsevich M., Grokhovsky V.I., Yakovlev G.A., Haloda J., Halodova P., Michallik R.M., Penttila A., Muinonen K. (2014) Mineralogy, reflectance spectra, and physical properties of the Chelyabinsk LL5 chondrite – insight into shock-induced changes in asteroid regoliths. Icarus. 228, 78–85.
  42. 42. Litasov K.D., Podgornykh N.M. (2017) Raman spectroscopy of various phosphate minerals and occurrence of tuite in the Elga IIE iron meteorite. J. Raman Spectr. 48, 1518–1527.
  43. 43. Livingstone A. (1980) Johnsomervilleite, a new transition-metal phosphate mineral from the Loch Quoich area, Scotland. Mineral. Mag. 43 (331), 833–836.
  44. 44. Lodziński M., Sitarz M. (2009) Chemical and spectroscopic characterization of some phosphate accessory minerals from pegmatites of the Sowie Góry Mys, SW Poland. J. Molecul. Structure. 924–926, 442–447.
  45. 45. McCoy T.J., Carson W.D., Nittler L.R., Stroud R.M., Bogard D.D., Garrison D.H. (2006) Graves Nunataks 95209: A snapshot of metal segregation and core formation. Geochim. Cosmochim. Acta. 70, 516–531.
  46. 46. McCoy T.J., Steele I.M., Keil K., Leonard B.F., Endreβ M. (1994) Chladniite, Na2CaMg7(PO4)6: A new mineral from the Carlton (IIICD) iron meteorite. Am. Mineral. 79, 375–380.
  47. 47. Moore P.B. (1972) Sarcopside: Its atomic arrangement. Am. Mineral. 57, 24–35.
  48. 48. Olsen E.J., Fredriksson K. (1966) Phosphates in iron and pallasite meteorites. Geochim. Cosmochim. Acta. 30, 459–470.
  49. 49. Olsen E.J., Kracher A., Davis A.M., Steele I.M., Hutcheon. I.D., Bunch T.E. (1999). The phosphates of IIIAB iron meteorites. Meteorit. Planet. Sci. 34, 285–300.
  50. 50. Olsen E.J., Steele I.M. (1993) New alkali phosphates and their associations in the IIIAB iron meteorites. Meteoritics. 28, 415–415.
  51. 51. Olsen E.J., Steele I.M. (1997) Galileiite: A new meteoritic phosphate mineral Meteorit. Planet. Sci. 32, A155–A156.
  52. 52. Ozawa S., Miyahara, M., Ohtani E., Koroleva O.N., Ito Y., Litasov K.D., Pokhilenko N.P. (2014) Jadeite in Chelyabinsk meteorite and the nature of an impact event on its parent body. Sci. Reports. 4, 5033.
  53. 53. Nord A.G., Ericsson T. (1982) The cation distribution in synthetic (Fe, Mn)3(PO4)2 graftonite-type solid solutions. Am. Mineral. 67, 826–832.
  54. 54. Pieczka A., Hawthorne F.C., Ball N., Abdu Y., Gołębiowska B., Włodek A., Żukrowski J. (2018) Graftonite-(Mn), ideally M1MnM2,M3Fe2(PO4)2, and graftonite-(Ca), ideally M1CaM2,M3Fe2(PO4)2, two new minerals of the graftonite group from Poland. Mineral. Mag. 82, 1307–1322.
  55. 55. Popova O.P., Jenniskens P., Emel’yanenko V., Kartashova A., Biryukov E., Khaibrakhmanov S., Shuvalov V., Rybnov Yu., Dudorov A., Grokhovsky V.I., Badyukov D.D., Yin Q.-Z., Gural P.S., Albers J., Granvik M., Evers L.G., Kuiper J., Kharlamov V., Solovyov A., Rusakov Y.S., Korotkiy S., Serdyuk I., Korochantsev A.V., Larionov M.Yu., Glazachev D., Mayer A.E., Gisler G., Gladkovsky S.V., Wimpenny J., Sanborn M.E., Yamakawa A., Verosub K.L., Rowland D.J., Roeske S., Botto N.W., Friedrich J.M., Zolensky M.E., Le L., Ross D., Ziegler K., Nakamura T., Ahn I., Lee J.I., Zhou Q., Li X.-H., Li Q.-L., Liu Y., Tang G.-Q., Hiroi T., Sears D., Weinstein I.A., Vokhmintsev A.S., Ishchenko A.V., Schmitt-Kopplin P., Hertkorn N., Nagao K., Haba M.K., Komatsu M., Mikouchi T. (2013). Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization. Science. 342, 1069–1073.
  56. 56. Righter K., Abell P., Agresti D., Berger E.L., Burton A.S., Delaney J.S, Fries M.D., Gibson E.K., Haba M.K., Harrington R., Herzog G.F., Keller L.P., Locke D., Lindsay F.N., McCoy T.J., Morris R.V., Nagao K., Nakamura-Messenger K., Niles P.B., Nyquist L.E., Park J., Peng Z.X., Shih C.-Y., Simon J.I., Swisher III C.C., Tappa M.J., Turrin B.D., Zeigler R.A. (2015) Mineralogy, petrology, chronology, and exposure history of the Chelyabinsk meteorite and parent body. Meteorit. Planet. Sci. 50 (10), 1790–1819.
  57. 57. Rubin A.E. (1985) Impact melt products of chondritic material. Rev. Geophys. 23, 277–300.
  58. 58. Schrader D.L., Lauretta D.S., Connolly-Jr. H.C., Goreva Yu.S., Hill D.H., Domanik K.J., Berger E.L., Yang H., Downs R.T. (2010) Sulfide-rich metallic impact melts from chondritic parent bodies. Meteorit. Planet. Sci. 45 (5), 743–758.
  59. 59. Scott E.R.D. (1982). Origin of rapidly solidified FeNi-FeS grains in chondrites and iron meteorites. Geochim. Cosmochim. Acta. 46, 813–823.
  60. 60. Semenenko V.P., Perron C. (2005) Shock-melted material in the Krymka LL3.1 chondrite: Behavior of the opaque minerals. Meteorit. Planet. Sci. 40, 173–185.
  61. 61. Sharygin V.V. (2020) Mineralogy of silicate-natrophosphate immiscible inclusion in Elga IIE iron meteorite. Minerals. 10 (5), 437.
  62. 62. Sharygin V.V., Karmanov N.S., Podgornykh N.M. (2016a) Na-Fe-phosphate globules in impact metal-troilite associations of Chelyabinsk meteorite. Meteorit. Planet. Sci. 51 (S1), A567–A567.
  63. 63. Sharygin V.V., Karmanov N.S., Podgornykh N.M., Tomilenko A.A. (2016b) Melt inclusions in impact associations of Chelyabinsk meteorite (Chebarkul fragment). ACROFI–VI – 2016. Mumbai, India, p. 30–33.
  64. 64. Sharygin V.V., Timina T.Yu., Karmanov N.S., Tomilenko A.A., Podgornykh N.M. (2013) Mineralogy of the Chelyabinsk meteorite, Russia. Mineral. Mag. 77 (5), 2189–2189.
  65. 65. Steele I.M., Olsen E., Pluth J.J., Davis A.M. (1991) Occurrence and crystal structure of Ca-free beusite in the El Sampal IIIA iron meteorite. Am. Mineral. 76, 1985–1989.
  66. 66. Trieloff M., Korochantseva E.V., Buikin A.I., Hopp J., Ivanova M.A., Korochantsev A.V. (2018) The Chelyabinsk meteorite: thermal history and variable shock effects recorded by the 40Ar 39Ar system. Meteorit. Planet. Sci. 53, 343–358.
  67. 67. Xie X., Chen M., Zhai S.-M., Wang F. (2014) Eutectic metal + troilite + Fe-Mn-Na phosphate + Al-free chromite assemblage in shock-produced chondritic melt of the Yanzhuang chondrite. Meteorit. Planet. Sci. 49, 2290–2304.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library