RAS Earth ScienceГеохимия Geochemistry International

  • ISSN (Print) 0016-7525
  • ISSN (Online) 3034-4956

METAL-RICH UNGROUPED CHONDRITE NORTHWEST AFRICA 13202

PII
S3034495625090019-1
DOI
10.7868/S3034495625090019
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 9
Pages
677-691
Abstract
A meteorite of a new type, NWA 13202, was revealed for the first time in the collection of the Russian Academy of Sciences. It belongs to metal-rich ungrouped chondrites and is paired with chondrites NWA 12379/12273. These chondrites contain on average ~70 vol. % Fe, Ni metal, and ~20 vol. % of chondrules and silicate inclusions imbedded in metal. Similar to other known metal-rich chondrites (G, CH, CBa, and CBb), there is no fine-grained silicate matrix in NWA 13202. Chondrules are represented mainly by porphyritic olivine-pyroxene, olivine and pyroxene types (POP, OP and PP); non-porphyritic chondrules (BO, SO, CC, RC, GC) are rare. Olivine has an L-chondrite chemical composition, Fa25.9 ± 3.5 mol. %, and low-Ca-pyroxene is Fs17.2 ± 5.7 mol. %, which resembles more closely H chondrites. According to the olivine composition heterogeneity, the meteorite corresponds to chondrites of the 3–4 petrological type. Accessory minerals are phosphates and chromite. The metal includes low-Ni kamacite and high-Ni taenite and tetrataenite, and the only sulfide is troilite. The oxygen isotopic composition of chondrule silicates of these ungrouped chondrites confirms their affinities to the oxygen isotope reservoir of LL chondrites (Jansen et al., 2019). The metal experienced partial melting and its formation age is ~2.4 Ma after the formation of CaAl – inclusions (Liu et al., 2023). The studied chondrites were probably formed as a result of a catastrophic collision of metallic and chondritic bodies. The intensity and conditions during this event were not sufficient to form chondrules with chondrules of a quenched structure such as CC and SO types. After the reaccretion of a new parent body of the metal-rich ungrouped chondrite, the material of NWA 13202 and NWA 12379/12273 was affected by aqueous alteration and metamorphism at a temperature of ~600°C, which produced phosphates and rims of Fe-rich olivine around low-Ca pyroxene.
Keywords
богатые металлом хондриты порфировые и непорфировые хондры катастрофическое ударное событие реаккреция водные преобразования флюид и термальный метаморфизм на родительском астероиде
Date of publication
07.03.2025
Year of publication
2025
Number of purchasers
0
Views
24

References

  1. 1. Иванова М.А., Петаев М.И. (2015) Характеристика и происхождение компонентов углистого СН хондрита NWA 470. Петрология 23(2), 167–185.
  2. 2. Agee C.B., Vaci Z., Ziegler K., and Spilde M.N. (2019) Northwest Africa 12273: Unique ungrouped metal-rich chondrite. Lunar Planet. Sci. 50, abstract #1176.
  3. 3. Anand A., Papea J., Willea M., Mezger K. Anand A. (2021) Chronological constraints on the thermal evolution of ordinary chondrite parent bodies from the 53Mn 53Cr system. Geochim. Cosmochim. Acta 307, 281–301.
  4. 4. Bollard J., Connelly J., and Bizzarro M. (2015) Pb-Pb dating of individual chondrules from the CBa chondrite Gujba: Assessment of the impact plume formation model. Meteorit. Planet. Sci. 50, 1197‒1216.
  5. 5. Budde G., Burkhardt C., Brennecka G.A., Fischer-Gödde M., Kruijer T.S., and Kleine T. (2016) Molybdenum isotopic evidence for the origin of chondrules and a distinct genetic heritage of carbonaceous and non-carbonaceous meteorites. Earth Planet. Sci. Lett. 454, 293–303.
  6. 6. Campbell, A.J., Humayun, M., and Weisberg, M.K. 2002. Siderophile Element Constraints on the Formation of Metal in the Metal-Rich Chondrites Bencubbin, Gujba and Weatherford. Geochim. Cosmochim. Acta 66, 647–60.
  7. 7. Clayton R.N., Mayeda T.K., Goswami J., and Olsen E.J. (1991) Oxygen isotope studies of ordinary chondrites. Geochim. Cosmochim. Acta 55, 2317–2337.
  8. 8. Connely J.N., Bizzarro M., Krot A.N., Nordlunds A., Wielandt D., Ivanova M.A. 2012. The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338 (6107), 651–655.
  9. 9. Cook D.L., Schönbächler M. (2017) Iron isotopic compositions of troilite (FeS) inclusions from iron meteorites. Astronom. J. 154, 172.
  10. 10. Doyle P.M., Jogo K., Nagashima K., Krot A.N., Wakita S., Ciesla F.J., and Hutcheon I.D. (2015) Early aqueous activity on the ordinary and carbonaceous chondrite parent bodies recorded by fayalite. Nature Comm. 6(7444), 1–10.
  11. 11. Gattacceca J., McCubbin F.M., Grossman J., Bouvier A., Bullock E., Chennaoui Aoudjehane H., Debaille V., D’Orazio M., Komatsu M., Miao B. and Schrader D. L. 2021. The Meteoritical Bulletin, No. 109. Meteorit. Planet. Sci. 56, 1626–1630.
  12. 12. Grossman J.N., Brearley A.J. (2005) The onset of metamorphism in ordinary and carbonaceous chondrites. Meteorit. Planet. Sci. 40, 87–122.
  13. 13. Fedkin A.V., Grossman L., Humayun M., Simon S.B., and Campbell A.J. (2015) Condensates from vapor made by impacts between metal-, silicate-rich bodies: Comparison with metal and chondrules in CB chondrites. Geochim. Cosmochim. Acta 164, 236–261.
  14. 14. Huss G.R., Rubin A.E., and Grossman J.N. (2006) Thermal metamorphism in chondrites. In D. S. Lauretta and H. Y. McSween, editors, Meteorites and the Early Solar System II, pp. 567–586. University of Arizona Press, Tucson AZ.
  15. 15. Ivanova M.A., Krot A.N. (1994) Chromite chondrules and inclusions in ordinary chondrites. Geokhimiya 6, 642‒658.
  16. 16. Ivanova M.A., Kononkova N.N., Krot A.N., Greewood R.C., Franchi I.A., Verchovsky A.B., Trieloff M., Korochantseva E.V., Brandstaetter F. (2008). The Isheyevo meteorite: Mineralogy, petrology, bulk chemistry, oxygen, nitrogen, carnom isotopic compositions and 40Ar 39Ar ages. Meteorit. Planet. Sci. 43, 915–940.
  17. 17. Ivanova M.A., Lorenz C.A., Humayun M., Corrigan C.M., Ludwig T., Trieloff M., Righter K., Franchi I.A., Verchovsky A.B., Korochantseva E.V., Kozlov V.V., Teplyakova S.N., Korochantsev A.V., Grokhovsky V.I. (2020) Sierra Gorda 009: A New Member of the Metal-Rich G Chondrites Subgroup. Meteorit. Planet. Sci. 55, 1764–1792.
  18. 18. Ivanova M.A., Lorenz C.A., Humayun M., Yang S., Ma C., Teplyakova S.N., Franchi I.A., Korochantsev A.V. 2022. Sierra Gorda 013: Unusual CBa-like metal-rich chondrite. Meteorit. Planet. Sci. 57, 657–682.
  19. 19. Jansen C.A., Brenker F.E., Krot A.N., Zipfel J., Pack A., Labenne L., Bizzarro M., and Schiller M. (2019) Mineralogy, petrology, and oxygen isotopic composition of Northwest Africa (NWA) 12379, a new metal-rich chondrite with affinity to ordinary chondrites. Lunar Planet. Sci. Conf. 50, abstract #2741.
  20. 20. Jones R.H. (1998) A compilation of olivine and low-Ca pyroxene compositions in type 4–6 ordinary chondrites. Lunar Planet. Sci. Conf. 29, abstract #1397.
  21. 21. Jones R.H., McCubbin F.M., Dreeland L., Guan Y., Burger P.V., and Shearer C.K. (2014) Phosphate minerals in LL chondrites: A record of the action of fluids during metamorphism on ordinary chondrite parent bodies. Geochim. Cosmochim. Acta 132, 120–140.
  22. 22. Kallemeyn G.W., Boynton W.V., Willis J., and Wasson J.T. (1978) Formation of Bencubbin Polymict Meteoritic Breccia. Geochim. Cosmochim. Acta 42, 507–15.
  23. 23. Kimura M., El Goresy A., Palme H., and Zinner E. (1993) Ca–Al-rich inclusions in the unique chondrite ALH 85085 – Petrology, chemistry, and isotopic compositions. Geochim. Cosmochim. Acta 57, 2329–2359.
  24. 24. Kita N.T., Nagahara H., Tachibana S., Tomomura S., Spicuzza M.J., Fournelle J.H., and Valley J.W. (2010) High precision SIMS oxygen three isotope study of chondrules in LL3 chondrites: role of ambient gas during chondrule formation. Geochim. Cosmochim. Acta 74, 6610–6635.
  25. 25. Kleine T., Touboul M., Bourdon B., Nimmo F., Mezger K., Palme H., Jacobsen S.B., Yin Q.-Z., and Halliday A.N. (2009) Hf–W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim. Cosmochim. Acta 73, 5150–5188.
  26. 26. Koch T.E., Brenker F.E., Prior D.J., Jilly K., Krot A.N., Bizarro M. (2019) Shock history of the metal-rich CB chondrite Quebrada Chimborazo (QC) 001.82nd Annual Meeting of The Meteoritical Society, held 7–12 July, Sapporo, Japan. Abstract # 6179.
  27. 27. Koefoed P., Pravdivtseva O., Ogliore R., Jiang Y., Lodders K., Neuman M., Wang K. (2022) The dynamic formation process of the CB chondrite Gujba. Geochim. Cosmochim. Acta 332, 33–56.
  28. 28. Krot A.N., Ivanova M.A. and Wasson J.T. (1993) The origin of chromitic chondrules and the volatility of Cr under a range of nebular conditions. Earth Planet. Sci. Letters 119, 569‒584.
  29. 29. Krot A.N., Meibom A., Weisberg M.K., and Keil K. (2002) The CR chondrite clan: Implications for early solar system processes. Meteorit. Planet. Sci. 37, 1451–1490.
  30. 30. Krot A.N., Amelin Y., Cassen P., and Meibom A. (2005) Young chondrules in CB chondrites from a giant impact in the early Solar System. Nature 436, 989–992.
  31. 31. Krot A.N., Nagashima K., Bizzarro M., Huss G.R., Davis A.M., McKeegan K.D., Meyer B.S. and Ulyanov A.A. (2008) Multiple generations of refractory inclusions in the metal-rich carbonaceous chondrites Acfer 182/214 and Isheyevo. Astrophys. J. 672, 713–721.
  32. 32. Krot A.N., Nagashima K., Yoshitake M. and Yurimoto H. (2010) Oxygen isotope compositions of chondrules from the metal-rich chondrites Isheyevo (CH/CBb), MAC02675 (CBb) and QUE94627 (CBb). Geochim. Cosmochim. Acta 74, 2190–2211.
  33. 33. Krot A.N., Nagashima K. and Petaev M.I. (2012) Isotopically uniform, 16O-depleted calcium, aluminum-rich inclusions in CH and CB carbonaceous chondrites. Geochim. Cosmochim. Acta 83, 159–178.
  34. 34. Krot A.N., Nagashima K., E.M.M. van Kooten, and Bizzarro M. (2017) High-temperature rims around calcium-aluminum-rich inclusions from the CR, CB and CH carbonaceous chondrites. Geochim. Cosmochim. Acta 201, 155‒184.
  35. 35. Krot A.N., Petaev M.I., Nagashima K., Dobricka E., Johnson B.C., Cashion M.D. (2021) Impact plume-formed and protoplanetary disk high-temperature components in CB and CH metal-rich carbonaceous chondrites. Meteorit. Planet. Sci. 56, 1–29.
  36. 36. Krot A.N., Nagashima K., Ivanova M.A., Lauretta D., Libourel G., Brandon C., Johnson B.C., Cashion M.D., Brenker F., Hoffman V., Bizzarro M. (2023) Oxygen isotopic compositions of chondritic and achondritic lithologies in the anomalous CB carbonaceous chondrites Sierra Gorda 013 and Fountain Hills. Meteorit. Planet. Sci. 58(4), 754–777.
  37. 37. Kruijer T.S., Burkhardt C., Budde G., and Kleine T. (2017) Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proc. Nat. Acad. Sci. 114, 6712–6716.
  38. 38. Lauretta D.S., Goreva J.S., Hill D.H., Killgore M., La Blue A.R., Campbell A., Greenwood R.C, Franchi I.A., Verchovsky A.B. (2009) The Fountain Hills unique CB chondrite: Insights into thermal processes on the CB parent body. Meteorit. Planet. Sci. 44, 823–838.
  39. 39. Liu H., Ash R.D., Yan Luo Y., Pearson D.G., Liu J. (2023) Siderophile element and Hf-W isotope characteristics of the metal-rich chondrite NWA 12273 – Implication for its origin and chondrite metal formation. Earth Planet. Sci. Lett. 612(15), 118162.
  40. 40. Lorenz C.A., Ivanova M.A., Zinovieva N.G., Ryazantsev K.M., Korochantsev A.V. (2023) Heterogeneity of planetesimal collisional plime probed by glass inclusions in metal globules of Sierra Gorda 013, unusual CBa-like chondrite. Meteorit. Planet. Sci. 58, 241–258.
  41. 41. Lewis J., and Jones R. (2018) Evidence from secondary minerals for three stages of metasomatism during thermal metamorphism in ordinary chondrites. Lunar Planet. Sci. Conf. 49, abstract #2083.
  42. 42. MacPherson G. J. (2014) Calcium-aluminum-rich inclusions in chondritic meteorites. In: Davis, A.M. (Ed.), Meteorites and Cosmochemical Processes Vol. 1. Elsevier, Oxford, pp. 139–179 Treatise on Geochemistry, 2nd Ed. (H. D. Holland, K. K. Turekian).
  43. 43. Nanne J.A., Nimmo F., Cuzzi J.N., and Kleine T. (2019) Origin of the non-carbonaceous carbonaceous meteorite dichotomy. Earth Planet. Sci. Lett. 511, 44–54.
  44. 44. Oulton J., Humayun M., Fedkin A., and Grossman L. (2016) Chemical evidence for differentiation, evaporation and recondensation from silicate clasts in Gujba. Geochim. Cosmochim. Acta 77, 254‒274.
  45. 45. Petaev M.I., Meibom A., Krot A.N., Wood J.A., and Keil K. 2001. The Condensation Origin of Zoned Metal Grains in Queen Alexandra Range 94411: Implications for the Formation of the Bencubbin-Like Chondrites. Meteorit. Planet. Sci. 36, 93–106.
  46. 46. Rubin A.E., Kallemeyn G.W., Wasson J.T., Clayton R.N., Mayeda T.K., Grady M., Verchovsky A.B., Eugster O., and Lorenzetti S. (2003) Formation of metal and silicate globules in Gujba: a new Bencubbin-like meteorite fall. Geochem. Cosmochim. Acta 67, 3283–3298.
  47. 47. Russell S.S., McCoy T.J., Jarosewich E. and Ash R.D. 1998. The Burnwell, Kentucky, low iron oxide chondrite fall: Description, classification and origin. Meteorit. Planet. Sci. 33, 853–856.
  48. 48. Scott E.R.D., Krot A.N. (2014) Chondrites and their components. In Meteorites and Cosmochemical Processes (Ed. A. M. Davis), Vol. 1 Treatise on Geochemistry, 2nd Ed. (Exec. Eds. H. D. Holland and K. K. Turekian), Elsevier, Oxford, pp. 65–137.
  49. 49. Trinquier A., Elliott T., Ulfbeck D., Coath C., Krot A.N., and Bizzarro M. (2009) Origin of nucleosynthetic isotope heterogeneity in the solar protoplanetary disk. Science 324, 374–376.
  50. 50. Troiano J., Rumble III D., River M.L. and Friedrich J.M. (2011) Compositions of three low-FeO ordinary chondrites: Indications of a common origin with the H chondrites. Geochim. Cosmochim. Acta 75, 6511–6519.
  51. 51. van Kooten E.M.M.E., Wielandt D., Schiller M., Nagashima K., Thomen A., Larsen K.K., Olsen M.B., Nordlund Å, Krot A.N., and Bizzarro M. (2016) Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites. Proc. Nat. Acad. Sci. 113, 2011– 2016.
  52. 52. Wark D.A., Lovering J.F. (1977) Marker events in the early evolution of the solar system: Evidence from rims on Ca–Al-rich inclusions from carbonaceous chondrites. Proc. Lunar Planet. Sci. Conf. 8, 95–112.
  53. 53. Wasson J.T., and Kallemeyn G.W. 1990. Allan Hills 85085: A subchondritic meteorite of mixed nebular and regolithic heritage. Earth Planet. Sci. Lett. rs 101, 148–61.
  54. 54. Warren P.H. (2011) Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites. Earth Planet. Sci. Lett. 311, 93–100.
  55. 55. Weber D., Zinner E., and Bischoff A. (1995) Trace element abundances and magnesium, calcium, and titanium isotopic compositions of grossite-containing inclusions from the carbonaceous chondrite Acfer 182. Geochim. Cosmochim. Acta 59, 803‒823.
  56. 56. Weisberg M.K., Prinz M., Clayton R.N., Mayeda T.K., Grady M.M. and Pillinger C.T. (1995) The CR chondrite clan. Proc. NIPR Symp. Antarct. Meteorit. 8, 11–32.
  57. 57. Weisberg M.K., Prinz M., Clayton R.N., Mayeda T.K., Sugiura N., Zashu S., and Ebihara M. (2001) A new metal-rich chondrite grouplet. Meteorit. Planet. Sci. 36, 401–418.
  58. 58. Weisberg M.K., Ebel D.S., Nakashima D., Kita N.T., and Humayun M. (2015) Petrology and geochemistry of chondrules and metal in NWA 5492 and GRO 95551: A new type of metal-rich chondrite. Geochim. Cosmochim. Acta 167, 269–285.
  59. 59. Weyrauch M., Horstmann M. and Bischoff A. (2018) Chemical variations of sulfides and metal in enstatite chondrites – Introduction of a new classification scheme. Meteorit. Planet. Sci. 53, 94–415.
  60. 60. Wlotzka F. (1993) A weathering scale for the ordinary chondrites. Meteoritics 28, 460.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library