ОНЗ Геохимия Geochemistry International

  • ISSN (Print) 0016-7525
  • ISSN (Online) 3034-4956

Стандартные термодинамические свойства Ag3Sn (шосанбецуит), определенные ЭДС-методом

Код статьи
S0016752525020042-1
DOI
10.31857/S0016752525020042
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 70 / Номер выпуска 2
Страницы
158-164
Аннотация
В системе Ag–Sn впервые определены термодинамические свойства шосанбецуита (Ag3Sn) в твердотельной гальванической ячейке: (–) Pt | Gr | Ag | RbAg4I5 | Ag3Sn, Sn | Gr | Pt (+), в температурном диапазоне 327–427 K в вакууме. В результате анализа полученных данных рассчитаны стандартные (298.15 K, 105 Па) ΔfG0, ΔfH0 и S0, которые составили для Ag3Sn: –21238 Дж·моль–1, –18763 Дж·моль–1 и 187.5 Дж·К–1·моль–1 соответственно.
Ключевые слова
Ag–Sn Ag3Sn ЭДС-метод шосанбецуит
Дата публикации
16.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
2

Библиография

  1. 1. Воронин М.В., Осадчий Е.Г. (2011) Определение термодинамических свойств селенида серебра методом гальванической ячейки с твердыми и жидкими электролитами. Электрохимия. 47, 446-452.
  2. 2. Глушко В.П. (отв. ред.). (1965-1982) Термические константы веществ: Справочник в 10-и выпусках. М.: ВИНИТИ, электронная версия (под руководством Иориш В.С. и Юнгман В.С.): https://www.chem.msu.ru/cgi-bin/tkv.pl?show=welcome.html.
  3. 3. Жданов Н.Н., Осадчий Е.Г., Зотов А.В. (2005) Универсальная измерительная система для электрохимических измерений в гидротермальных и конденсированных средах. Сборник материалов XV Российского Совещания по Экспериментальной Минералогии. Сыктывкар: Изд-во «Геопринт», 166-168.
  4. 4. Литвиненко И.С. (2017) Интерметаллиды золота из россыпи реки Баимка (Западная Чукотка). Записки Российского минералогического общества. 146(5), 31–43.
  5. 5. Сандимирова Е. И., Сидоров Е. Г., Чубаров В. М., Ибрагимова Э. К., Антонов А. В. (2013) Самородные металлы и интерметаллиды в шлиховых ореолах реки Ольховая 1-я (Камчатский мыс, Восточная Камчатка). Записки Российского минералогического общества. 142(6), 78–88.
  6. 6. Barin I. (1995) Thermochemical data of pure substances. Third Edition. Two Volumes: vol. 1 (Ag–Kr) and vol. II (La–Zr). VCH: New York, 1900 p.
  7. 7. Chevalier P.Y. (1988) A thermodynamic evaluation of the Ag–Sn system. Thermochim. Acta. 136, 45–54.
  8. 8. Cui Y., Xian J.W., Zois A., Marquardt K., Yasuda H., Gourlay C.M. (2023) Nucleation and growth of Ag3Sn in Sn–Ag and Sn–Ag–Cu solder alloys. Acta Mater. 249, 118831.
  9. 9. Esaka H., Shinozuka K., Tamura M. (2005) Evolution of structure unidirectionally solidified Sn–Ag3Sn eutectic alloy. Mater. Trans. 46(5), 916–921.
  10. 10. Fairhurst C.W., Cohen J.B. (1972) The crystal structures of two compounds found in dental amalgam: Ag2Hg3 and Ag3Sn. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 28(2), 371–378.
  11. 11. Flandorfer H., Saeed U., Luef C., Sabbar A., Ipser H. (2007) Interfaces in lead-free solder alloys: Enthalpy of formation of binary Ag–Sn, Cu–Sn and Ni–Sn intermetallic compounds. Thermochim. Acta. 459(1–2), 34–39.
  12. 12. Franke P., Neuschütz D. (eds.). (2002) Ag–Sn (Silver-Tin). Landolt-Börnstein – Group IV “Physical Chemistry”, Volume 19 “Thermodynamic Properties of Inorganic Materials”, Subvolume 19B1 “Binary Systems. Part 1: Elements and Binary Systems from Ag–Al to Au–Tl”. Springer-Verlag Berlin Heidelberg, 4 p.
  13. 13. Hou N., Xian J.W., Sugiyama A., Yasuda H., Gourlay C.M. (2023) Ag3Sn morphology transitions during eutectic growth in Sn–Ag alloys. Metall. Mater. Trans. A. 54(3), 909–927.
  14. 14. Ipser H., Flandorfer H., Luef C., Schmetterer C., Saeed U. (2007) Thermodynamics and phase diagrams of lead-free solder materials. J. Mater. Sci.: Mater. Electron. 18, 3–17.
  15. 15. Karakaya I., Thompson W.T. (1987) The Ag–Sn (silver-tin) system. Bull. Alloy Phase Diagrams. 8(4), 340–347.
  16. 16. Kattner U.R., Boettinger W.J. (1994) On the Sn–Bi–Ag ternary phase diagram. J. Electron. Mater. 23, 603–610.
  17. 17. Kleppa O.J. (1955) A calorimetric investigation of the system silver-tin at 450°C. Acta Metall. 3(3), 255–259.
  18. 18. Kotadia H.R., Howes P.D., Mannan S.H. (2014) A review: On the development of low melting temperature Pb-free solders. Microelectron. Reliab. 54(6–7), 1253–1273.
  19. 19. Nishio–Hamane D., Saito K. (2021) Au (Ag)–Sn–Sb–Pb minerals in association with placer gold from Rumoi province of Hokkaido, Japan: a description of two new minerals (rumoiite and shosanbetsuite). J. Mineral. Petrol. Sci. 116(5), 263–271.
  20. 20. Osadchii E.G., Echmaeva E.A. (2007) The system Ag–Au–Se: Phase relations below 405 K and determination of standard thermodynamic properties of selenides by solid-state galvanic cell technique. Am. Mineral. 92, 640–647.
  21. 21. Osadchii E.G., Rappo O.A. (2004) Determination of standard thermodynamic properties of sulfides in the Ag–Au–S system by means of a solid-state galvanic cell. Am. Mineral. 89, 1405–1410.
  22. 22. Prince A., Liang P., Tedenac J.-C., Lakiza S., Dobatkina T. (2006) Ag–Au–Sn (Silver-Gold-Tin). Landolt-Börnstein – Group IV “Physical Chemistry”, Volume 11 “Ternary Alloy Systems – Phase Diagrams, Crystallographic and Thermodynamic Data critically evaluated by MSIT”, Subvolume 11B “Noble Metal Systems. Selected Systems from Ag–Al–Zn to Rh–Ru–Sc”. Effenberg G., Ilyenko S. (eds.), Springer-Verlag Berlin Heidelberg, 11 p.
  23. 23. Wachtler M., Winter M., Besenhard J.O. (2002) Anodic materials for rechargeable Li-batteries. J. Power Sources. 105, 151–160.
  24. 24. Wallbrecht P.C., Blachnik R., Mills K.C. (1981) The heat capacity and enthalpy of some Hume-Rothery phases formed by copper, silver and gold. Part II. Cu+Ge, Cu+Sn, Ag+Sn, Au+Sn, Au+Pb systems. Thermochim. Acta. 46(2), 167–174.
  25. 25. Xie Y., Qiao Z. (1996) Thermodynamic reoptimization of the Ag–Sn system. J. Phase Equilib. 17, 208–217.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека