- Код статьи
- S0016752525020042-1
- DOI
- 10.31857/S0016752525020042
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 70 / Номер выпуска 2
- Страницы
- 158-164
- Аннотация
- В системе Ag–Sn впервые определены термодинамические свойства шосанбецуита (Ag3Sn) в твердотельной гальванической ячейке: (–) Pt | Gr | Ag | RbAg4I5 | Ag3Sn, Sn | Gr | Pt (+), в температурном диапазоне 327–427 K в вакууме. В результате анализа полученных данных рассчитаны стандартные (298.15 K, 105 Па) ΔfG0, ΔfH0 и S0, которые составили для Ag3Sn: –21238 Дж·моль–1, –18763 Дж·моль–1 и 187.5 Дж·К–1·моль–1 соответственно.
- Ключевые слова
- Ag–Sn Ag3Sn ЭДС-метод шосанбецуит
- Дата публикации
- 16.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 2
Библиография
- 1. Воронин М.В., Осадчий Е.Г. (2011) Определение термодинамических свойств селенида серебра методом гальванической ячейки с твердыми и жидкими электролитами. Электрохимия. 47, 446-452.
- 2. Глушко В.П. (отв. ред.). (1965-1982) Термические константы веществ: Справочник в 10-и выпусках. М.: ВИНИТИ, электронная версия (под руководством Иориш В.С. и Юнгман В.С.): https://www.chem.msu.ru/cgi-bin/tkv.pl?show=welcome.html.
- 3. Жданов Н.Н., Осадчий Е.Г., Зотов А.В. (2005) Универсальная измерительная система для электрохимических измерений в гидротермальных и конденсированных средах. Сборник материалов XV Российского Совещания по Экспериментальной Минералогии. Сыктывкар: Изд-во «Геопринт», 166-168.
- 4. Литвиненко И.С. (2017) Интерметаллиды золота из россыпи реки Баимка (Западная Чукотка). Записки Российского минералогического общества. 146(5), 31–43.
- 5. Сандимирова Е. И., Сидоров Е. Г., Чубаров В. М., Ибрагимова Э. К., Антонов А. В. (2013) Самородные металлы и интерметаллиды в шлиховых ореолах реки Ольховая 1-я (Камчатский мыс, Восточная Камчатка). Записки Российского минералогического общества. 142(6), 78–88.
- 6. Barin I. (1995) Thermochemical data of pure substances. Third Edition. Two Volumes: vol. 1 (Ag–Kr) and vol. II (La–Zr). VCH: New York, 1900 p.
- 7. Chevalier P.Y. (1988) A thermodynamic evaluation of the Ag–Sn system. Thermochim. Acta. 136, 45–54.
- 8. Cui Y., Xian J.W., Zois A., Marquardt K., Yasuda H., Gourlay C.M. (2023) Nucleation and growth of Ag3Sn in Sn–Ag and Sn–Ag–Cu solder alloys. Acta Mater. 249, 118831.
- 9. Esaka H., Shinozuka K., Tamura M. (2005) Evolution of structure unidirectionally solidified Sn–Ag3Sn eutectic alloy. Mater. Trans. 46(5), 916–921.
- 10. Fairhurst C.W., Cohen J.B. (1972) The crystal structures of two compounds found in dental amalgam: Ag2Hg3 and Ag3Sn. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 28(2), 371–378.
- 11. Flandorfer H., Saeed U., Luef C., Sabbar A., Ipser H. (2007) Interfaces in lead-free solder alloys: Enthalpy of formation of binary Ag–Sn, Cu–Sn and Ni–Sn intermetallic compounds. Thermochim. Acta. 459(1–2), 34–39.
- 12. Franke P., Neuschütz D. (eds.). (2002) Ag–Sn (Silver-Tin). Landolt-Börnstein – Group IV “Physical Chemistry”, Volume 19 “Thermodynamic Properties of Inorganic Materials”, Subvolume 19B1 “Binary Systems. Part 1: Elements and Binary Systems from Ag–Al to Au–Tl”. Springer-Verlag Berlin Heidelberg, 4 p.
- 13. Hou N., Xian J.W., Sugiyama A., Yasuda H., Gourlay C.M. (2023) Ag3Sn morphology transitions during eutectic growth in Sn–Ag alloys. Metall. Mater. Trans. A. 54(3), 909–927.
- 14. Ipser H., Flandorfer H., Luef C., Schmetterer C., Saeed U. (2007) Thermodynamics and phase diagrams of lead-free solder materials. J. Mater. Sci.: Mater. Electron. 18, 3–17.
- 15. Karakaya I., Thompson W.T. (1987) The Ag–Sn (silver-tin) system. Bull. Alloy Phase Diagrams. 8(4), 340–347.
- 16. Kattner U.R., Boettinger W.J. (1994) On the Sn–Bi–Ag ternary phase diagram. J. Electron. Mater. 23, 603–610.
- 17. Kleppa O.J. (1955) A calorimetric investigation of the system silver-tin at 450°C. Acta Metall. 3(3), 255–259.
- 18. Kotadia H.R., Howes P.D., Mannan S.H. (2014) A review: On the development of low melting temperature Pb-free solders. Microelectron. Reliab. 54(6–7), 1253–1273.
- 19. Nishio–Hamane D., Saito K. (2021) Au (Ag)–Sn–Sb–Pb minerals in association with placer gold from Rumoi province of Hokkaido, Japan: a description of two new minerals (rumoiite and shosanbetsuite). J. Mineral. Petrol. Sci. 116(5), 263–271.
- 20. Osadchii E.G., Echmaeva E.A. (2007) The system Ag–Au–Se: Phase relations below 405 K and determination of standard thermodynamic properties of selenides by solid-state galvanic cell technique. Am. Mineral. 92, 640–647.
- 21. Osadchii E.G., Rappo O.A. (2004) Determination of standard thermodynamic properties of sulfides in the Ag–Au–S system by means of a solid-state galvanic cell. Am. Mineral. 89, 1405–1410.
- 22. Prince A., Liang P., Tedenac J.-C., Lakiza S., Dobatkina T. (2006) Ag–Au–Sn (Silver-Gold-Tin). Landolt-Börnstein – Group IV “Physical Chemistry”, Volume 11 “Ternary Alloy Systems – Phase Diagrams, Crystallographic and Thermodynamic Data critically evaluated by MSIT”, Subvolume 11B “Noble Metal Systems. Selected Systems from Ag–Al–Zn to Rh–Ru–Sc”. Effenberg G., Ilyenko S. (eds.), Springer-Verlag Berlin Heidelberg, 11 p.
- 23. Wachtler M., Winter M., Besenhard J.O. (2002) Anodic materials for rechargeable Li-batteries. J. Power Sources. 105, 151–160.
- 24. Wallbrecht P.C., Blachnik R., Mills K.C. (1981) The heat capacity and enthalpy of some Hume-Rothery phases formed by copper, silver and gold. Part II. Cu+Ge, Cu+Sn, Ag+Sn, Au+Sn, Au+Pb systems. Thermochim. Acta. 46(2), 167–174.
- 25. Xie Y., Qiao Z. (1996) Thermodynamic reoptimization of the Ag–Sn system. J. Phase Equilib. 17, 208–217.