ОНЗ Геохимия Geochemistry International

  • ISSN (Print) 0016-7525
  • ISSN (Online) 3034-4956

Образование К-кимрита в зонах субдукции и его потенциал в транспорте калия, воды и азота в мантию

Код статьи
10.31857/S0016752524120023-1
DOI
10.31857/S0016752524120023
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 69 / Номер выпуска 12
Страницы
1139-1150
Аннотация
Условия образования K-кимрита в богатом летучими пелите и частично дефлюидизированном кварц–мусковит–хлоритовом сланце экспериментально исследованы при давлении 5.5, 6.3 и 7.8 ГПа и температуре от 900 до 1090°С, отвечающих геотерме горячей субдукции. В образцах при Р-Т параметрах экспериментов образуется ассоциация Grt + Coe + Phe + Cpx + Ky, с акцессорными Po + Ru + Zrn ± Mnz, и обогащенный водой сверхкритический флюид-расплав. Анализ полученных данных свидетельствует, что стабильность фенгита и потенциальная возможность его замены на K-кимрит (KAlSi3O8 · H2O) зависит от Р-Т параметров, количества летучих в метаосадке и режима его дефлюидизации. В образцах богатого летучими пелита и сланца при 5.5 и 900°С, а также при 6.3 ГПа и 1000°С фенгит остается стабилен в равновесии с 3–13 мас. % флюида-расплава. С ростом давления до 7.8 ГПа и температуры до 1090°С доля сверхкритического флюида-расплава в пелите достигает 20 мас. %, а фенгит исчезает. В сланце при 7.8 ГПа и 1070°С появляется лишь 5 мас. % сверхкритического флюида-расплава и сохраняется большая часть фенгита. Впервые с помощью КР-картирования в образцах пелита и сланца, полученных экспериментально при 7.8 ГПа и 1070°С, установлена фазовая ассоциация с фенгитом и K-кимритом (± кокчетавитом). При пошаговой дефлюидизации пелита (с удалением на каждом шаге порции флюида-расплава, образующегося в равновесии со стабильными при конкретных P-T параметрах минералами концентраторами летучих) фенгит в образце сохраняется до 7.8 ГПа и 1090°С, однако в отсутствие флюида-расплава K-кимрит не образуется. Сделан вывод, что наиболее эффективный транспорт летучих (прежде всего воды) в метаосадке на глубины более 240 км может осуществляться при его частичной дефлюидизации до момента образования сверхкритического флюида-расплава. В этом случае, практически весь фенгит в ходе субдуцирования метаосадка может достигнуть глубин 240 км и затем трансформироваться в водный, а при наличии азота в метаосадке, и азотсодержащий K-кимрит, обеспечивая дальнейший транспорт LILE, воды и азота. При образовании значительной доли сверхкритического флюида-расплава, в нем с ростом Р-Т параметров полностью растворяется фенгит и дальнейший транспорт LILE, воды и азота становится невозможен. При глубокой многоэтапной дефлюидизации метаосадка, фенгит остается стабилен до глубин 240 км, однако при дальнейшем субдуцировании он, вероятно, превращается в безводный K-холландит (KAlSi3O8).
Ключевые слова
субдукция глубинные циклы летучих метаосадки флюид эксперимент при высоких давлениях и температурах фенгит K-кимрит
Дата публикации
15.12.2024
Год выхода
2024
Всего подписок
0
Всего просмотров
45

Библиография

  1. 1. Карпенко Ю.В., Паутов Л.А., Агаханов А.А., Хворов П.В. (2001). О содержании азота в сланцах хребта Мань-Хамбо (С. Урал). Уральский минералогический сборник. Миасс: ИМин УрО РАН, с. 80–87.
  2. 2. Корсаков А.В., Михайленко Д.С., Серебрянников А.О., Логвинова А.М., Гладкочуб Д.П. (2024). Включение кокчетавита в кристалле алмаза из Венесуэлы ‒ свидетельство субдукции материала континентальной коры. ДАН. 515(7), 133–141.
  3. 3. Перчук А.Л., Сердюк А.А., Зиновьева Н.Г., Шур М.Ю. (2020). Плавление и минеральные парагенезисы глобального субдукционного осадка, обогащенного водой, в условиях закрытой и открытой системе: эксперимент и термодинамическое моделирование. Геология и геофизика. 61(5), 701–724.
  4. 4. Рябчиков И.Д., Орлова Г.П., Каленчук Г.Ю., Ганеев И.И., Удовкина Н.Г., Носик Л.П. (1989). Взаимодействие шипнелевого лерцолита с водно-углекислым флюидом при 20 кбар и 900 °С. Геохимия. (3), 56–62.
  5. 5. Сокол А.Г., Крук А.Н., Козьменко О.А. Пальянов Ю.Н. (2023а). Стабильность карбонатов при субдукции: влияние режима дефлюидизации хлорсодержащего метапелита. ДАН. 509(3), 50–55.
  6. 6. Сокол A.Г., Козьменко О.А., Крук А.Н., Нечепуренко С.Ф. (2023б). Состав флюида в карбонат- и хлорсодержащем пелите вблизи второй критической точки: результаты экспериментов с применением методики алмазной ловушки. Геология и геофизика. (8), 1106–1120.
  7. 7. Bebout G.E., Fogel M.L. Cartigny, P. (2013). Nitrogen: Highly volatile yet surprisingly compatible. Elements, 9(5), 333–338.
  8. 8. Chapman, T., Clarke, G.L., Daczko, N.R. (2019). The role of buoyancy in the fate of ultra-high-pressure eclogite. Sci. Reports. 9(1), 1–9.
  9. 9. Domanik K.J., Holloway J.R. (1996). The stability and composition of phengitic muscovite and associated phases from 5.5 to 11 GPa: implications for deeply subducted sediments. Geochim. Cosmochim. Acta. 60 (21), 4133–4150.
  10. 10. Grassi D., Schmidt M.W. (2011). The melting of carbonated pelites from 70 to 700 km depth. J. Petrol. 52 (4), 765–789.
  11. 11. Harlow G.E., Davies R. (2004). Status report on stability of K-rich phases at mantle conditions. Lithos. 77 (1–4), 647–653.
  12. 12. Hermann J., Green D.H. (2001). Experimental constraints on high pressure melting in subducted crust. Earth Planet. Sci. Lett. 188 (1–2), 149–168.
  13. 13. Hermann J., Spandler C.J. (2008). Sediment melts at sub-arc depths: an experimental study. J. Petrol. 49 (4), 717–740.
  14. 14. Hermann J., Zheng Y.F., Rubatto D. (2013). Deep fluids in subducted continental crust. Elements. 9 (4), 281–287.
  15. 15. Hwang S.L., Shen P., Chu H.T., Yui T.F., Liou J.G., Sobolev N.V., Zhang R.-Y., Shatsky V.S., Zayachkovsky A.A. (2004). Kokchetavite: a new potassium-feldspar polymorph from the Kokchetav ultrahigh-pressure terrane. Contrib. Mineral. Petrol. 148, 380–389.
  16. 16. Irifune T., Ringwood A.E., Hibberson W.O. (1994). Subduction of continental crust and terrigenous and pelagic sediments — An experimental study. Earth Planet. Sci. Lett. 126, 351–368.
  17. 17. Johnson M.C., Plank T. (1999). Dehydration and melting experiments constrain the fate of subducted sediments. Geochemistry, Geophysics, Geosystems. 1 (12).
  18. 18. Konzett J., Ulmer P. (1999). The stability of hydrous potassic phases in lherzolite mantle — An experimental study to 9.5 GPa in simplified and natural bulk compositions. J. Petrology. 40, 629–652.
  19. 19. Korsakov A.V., Romanenko A.V., Sokol A.G., Musiyachenko K.A. (2023). Raman spectroscopic study of the transformation of nitrogen‐bearing K‐cymrite during heating experiments: Origin of kokchetavite in high‐pressure metamorphic rocks. Journal of Raman Spectroscopy, 54(11), 1183–1190.
  20. 20. Kupriyanov I.N., Sokol A.G., Seryotkin Y.V., Kruk A.N., Tomilenko A.A., Bul’bak T.A. (2023). Nitrogen fractionation in mica metapelite under hot subduction conditions: Implications for nitrogen ingassing to the mantle. Chemical Geology, 628, 121476.
  21. 21. Massonne, H.J. (2011). Phase relations of siliceous marbles at ultrahigh pressure based on thermodynamic calculations: examples from the Kokchetav Massif, Kazakhstan and the Sulu terrane. China. Geol. J. 46 (2–3), 114–125.
  22. 22. Mikhno A.O., Schmidt U., Korsakov A.V. (2013). Origin of K-cymrite and kokchetavite in the polyphase mineral inclusions from Kokchetav UHP calc-silicate rocks: evidence from confocal Raman imaging. Eur. J. Mineral. 25 (5), 807–816.
  23. 23. Ono S. (1998). Stability limits of hydrous minerals in sediment and mid-ocean ridge basalt compositions: Implications for water transport in subduction zones. J. Geophys. Res. 103: 18253–18267.
  24. 24. Palyanov Y.N., Kupriyanov I.N., Khokhryakov A.F., Borzdov Y.M. (2017). High-pressure crystallization and proper- ties of diamond from magnesium-based catalysts. CrystEngComm. 19, 4459–4475.
  25. 25. Plank T. (2014). The chemical composition of subducting sediments. in: Holland HD, Turekian KK (Eds) Treatise on Geochemistry, Elsevier, Amsterdam, 607–629.
  26. 26. Plank T., Manning C.E. (2019). Subducting carbon. Nature. 574 (7778), 343–352.
  27. 27. Romanenko A.V., Rashchenko S.V., Sokol A.G., Korsakov A.V., Seryotkin Y.V., Glazyrin K.V., Musiyachenko K. (2021). Crystal structures of K-cymrite and kokchetavite from single-crystal X-ray diffraction. Am. Mineral. 106 (3), 404–409.
  28. 28. Romanenko A.V., Rashchenko S.V., Glazyrin K.V., Korsakov A.V., Sokol A.G., Kokh K.A. (2024). Compressibility and pressure-induced structural evolution of kokchetavite, hexagonal polymorph of KAlSi3O8, by single-crystal X-ray diffraction. Am. Mineral. 109 (7), 1284–1291
  29. 29. Schmidt M.W., Vielzeuf D., Auzanneau E. (2004). Melting and dissolution of subducting crust at high pressures: the key role of white mica. Earth Planet. Sci. Lett. 228 (1–2), 65–84.
  30. 30. Schmidt M., Poli S. (2014). Devolatilization during subduction. Treatise on Geochemistry. Elsevier, p. 669—701.
  31. 31. Sokol A.G., Kupriyanov I.N., Seryotkin Y.V., Sokol E.V., Kruk A.N., Tomilenko A.A., Bul’bak T.A., Palyanov Y.N. (2020). Cymrite as mineral clathrate: An overlooked redox insensitive transporter of nitrogen in the mantle. Gondwana Res. 79, p. 70—86.
  32. 32. Sokol A.G., Kupriyanov I.N., Kotsuba D.A., Korsakov A.V., Sokol E.V., Kruk A.N. (2023a). Nitrogen storage capacity of phengitic muscovite and K-cymrite under the conditions of hot subduction and ultra high-pressure metamorphism. Geochim. Cosmochim. Acta, 355, 89–109.
  33. 33. Sokol A.G., Kozmenko O.A., Kruk A.N. (2023b). Composition of supercritical fluid in carbonate-and chlorine-bearing pelite at conditions of subduction zones. Contrib. Mineral. Petrol. 178(12), 90.
  34. 34. Sokol A.G., Kozmenko O.A., Kruk A.N., Skuzovatov S.Y., Kiseleva, D.V. (2024). Trace-element mobility in pelite-derived supercritical fluid-melt at subduction-zone conditions. Contrib. Mineral. Petrol. 179(5), 1–18.
  35. 35. Sokol E., Kokh S., Kozmenko O, Novikova S., Khvorov P., Nigmatulina E., Belogub E., Kirillov M. (2018). Mineralogy and geochemistry of mud volcanic ejecta: a new look at old issues. Minerals. 8 (8), 344.
  36. 36. Sudo A., Tatsumi Y. (1990). Phlogopite and K-amphibole in the upper mantle: Implication for magma genesis in subduction zones. Geophys. Res. Lett. 17, 29–32.
  37. 37. Trønnes R.G. (2002). Stability range and decomposition of potassic richterite and phlogopite end members at 5–15 GPa. Mineral. Petrol. 74, 129–148.
  38. 38. Ulmer P., Trommsdorff V. (1995). Serpentine stability to mantle depths and subduction-related magmatism. Science. 268(5212), 858–861.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека