RAS Earth ScienceГеохимия Geochemistry International

  • ISSN (Print) 0016-7525
  • ISSN (Online) 3034-4956

Geochemistry of bottom sediments of Lake Peyungda (Tunguska Nature Reserve) and paleoclimatic reconstructions of the Arctic territories of Eastern Siberia

PII
10.31857/S0016752524050045-1
DOI
10.31857/S0016752524050045
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 5
Pages
468-476
Abstract
Lake Peyungda annually contains layered bottom sediments (varves), which make it possible to build a reliable age model for the entire depth of the core. The age model was refined over the last century based on the presence of a layer of anomalous thickness associated with the fall of the Tunguska cosmic body (TCB) in June 1908. The results of scanning µXRF-SI (elemental analysis along core depth) were used for comparison with regional average annual weather observation data over time interval 1895–2000. to create a transfer function: average annual temperature as a function of the elemental composition of the dated layer of bottom sediment. Approximation of the obtained function to the depth of core sampling made it possible to reconstruct changes in regional temperature over the time interval of the last millennium with an annual time resolution. A comparison of the obtained reconstruction with literary reconstructions for the Arctic region over the past 1000 years shows the presence of general trends and extremes, which confirms the reliability of the results obtained.
Keywords
Эвенкия Тунгусское космическое тело озеро Пеюнгда донные осадки геохимия микро-РФА синхротронное излучение температурные реконструкции
Date of publication
05.05.2024
Year of publication
2024
Number of purchasers
0
Views
33

References

  1. 1. Дарьин А.В., Бабич В.В., Калугин И.А., Маркович Т.И., Рогозин Д.Ю., Мейдус А.В., Дарьин Ф.А., Ракшун Я.В., Сороколетов Д.С. (2019) Исследование геохимических особенностей годовых слоев в донных осадках пресноводных озер методом рентгенофлуоресцентного микроанализа с возбуждением синхротронным излучением // Известия Российской академии наук. Серия физическая. 83 (11), 1572–1575.
  2. 2. Дарьин А.В., Гольдберг Е.Л., Калугин И.А., Федорин М.А., Золотарев К.В., Максимова Н.В. (2003) Отношение интенсивностей упруго- и неупругорассеянного на образце синхротронного излучения — климатически коррелированный палеосигнал в историческом слое (1860–1996 гг.) донных осадков оз.Телецкое. Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 12, 53–55.
  3. 3. Дарьин А.В., Калугин И.А., Бабич В.В., Маркович Т.И., Грачев А.М., Дарьин Ф.А., Ракшун Я.В., Сороколетов Д.С. (2019) Поиск годично стратифицированных донных осадков в озерах Горного Алтая методом рентгенофлуоресцентного микроанализа с использованием синхротронного излучения. Известия Российской академии наук. Серия физическая. 83, 243–246. https://doi.org/10.1134/S0367676519020108.
  4. 4. Дарьин А.В., Рогозин Д.Ю., Мейдус А.В., Бабич В.В., Калугин И.А., Маркович Т.И., Ракшун Я.В., Дарьин Ф.А., Сороколетов Д.С., Гогин А.А., Сенин Р.А., Дегерменджи А.Г. (2020) Следы Тунгусского события 1908 г. в донных осадках озера Заповедное по данным сканирующего РФА-СИ. ДАН. Науки о Земле. 492 (2). 61–65.
  5. 5. Клименко В.В. (2009) Климат: непрочитанная глава истории. Москва: Издательский дом МЭИ.
  6. 6. Babich V.V., Rudaya N.A., Kalugin I.A., Darin A.V. (2015) Complex use of the geochemical features of bottom deposits and pollen records for paleoclimate reconstructions (with lake Teletskoe, Altai Republic, as an example). Contemporary Problems of Ecology. 8, 405–413. https://doi.org/10.1134/S1995425515040022
  7. 7. Bezrukova E.V., Abzaeva A.A., Letunova P.P., Kostrova S.S., Tarasov P.E., Kulagina N.V. (2011) Palynological study of Lake Kotokel’ bottom sediments (Lake Baikal Region). Russian Geology and Geophysics. 52 (4), 458–465. https://doi.org/10.1016/j.rgg.2011.03.008
  8. 8. Boës X., Fagel N. (2009) Relationships between southern Chilean varved lake sediments, precipitation and ENSO for the last 600 years. Journal of Paleolimnology. 39, 237–252. https://doi.org/10.1007/s10933-007-9119-9
  9. 9. Brauer A. (2004) Annually Laminated Lake Sediments and Their Palaeoclimatic Relevance, In: Fischer, H., et al. The Climate in Historical Times. GKSS School of Environmental Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10313-5_7
  10. 10. Darin A.V., Kalugin I.A., Rakshun Y.V. (2013) Scanning X-ray microanalysis of bottom sediments using synchrotron radiation from the BINP VEPP-3 storage ring. Bulletin of the Russian Academy of Sciences: Physics. 77, 182–184. https://doi.org/10.3103/S106287381302010X
  11. 11. Darin A.V., Rakshun Y.V. (2013) Methodology for performing measurements in determining the elemental composition of rock samples by the method of X-RAY fluorescence analysis using synchrotron radiation from the VEPP-3 accessory. Data Analysis and Processing Systems. 2 (51), 112–118.
  12. 12. Gunten L., D’Andrea W.J., Bradley R.S., Huang Y. (2012) Proxy-to-proxy calibration: Increasing the temporal resolution of quantitative climate reconstructions. Sci. Rep., 2, 609. https://doi.org/10.1038/srep00609
  13. 13. Hanhijärvi S., Tingley M.P., Korhola A. (2013) Pairwise comparisons to reconstruct mean temperature in the Arctic Atlantic Region over the last 2,000 years. Climate Dynamics. 41 (7–8), 2039–2060.
  14. 14. Jones P.D., Briffa K.R., Osborn T.J., Lough J.M., Van Ommen T.D., et al. (2009) High-resolution palaeoclimatology of the last millennium: A review of current status and future prospects. Holocene. 19, 3–49.
  15. 15. Klimenko V., Matskovsky V., Dahlmann D. (2014) Multi-archive temperature reconstruction of the Russian Arctic for the past two millennia. Geography, environment, sustainability. 7 (1), 16–29. https://doi.org/10.24057/2071-9388-2014-7-1-16-29
  16. 16. Lamoureux S.F.. (2001) Varve chronology techniques. Developments in Paleoenvironmental Research (DPER). 2, 247–260.
  17. 17. P. Francus, Image Analysis, Sediments and Paleoenvironments. (2004) https://doi.org/10.1007/1–4020–2122–4
  18. 18. PAGES2k Consortium. (2013) Continental-scale temperature variability during the last two millennia. Nature Geoscience. 6, 339–346.
  19. 19. Rogozin D.Y., Krylov P.S., Dautov A.N. et al. (2023) Morphology of Lakes of the Central Tunguska Plateau (Krasnoyarsk Krai, Evenkiya): New Data on the Problem of the Tunguska Event of 1908. Dokl. Earth Sc. 510, 307–311. https://doi.org/10.1134/S1028334X23600044
  20. 20. Screen J., Simmonds I. (2010) The central role of diminishing sea ice in recent Arctic temperature amplification. Nature. 464, 1334–1337. https://doi.org/10.1038/nature09051
  21. 21. Semenov V.A. (2021) Modern Arctic Climate Research: Progress, Change of Concepts, and Urgent Problems. Izv. Atmos. Ocean. Phys. 57, 18–28. https://doi.org/10.1134/S0001433821010114
  22. 22. Serreze M.C., Barry R.G. (2011) Processes and impacts of Arctic amplification: A research synthesis. Global and Planetary Change. 77 (1–2), 85–96. https://doi.org/10.1016/j.gloplacha.2011.03.004
  23. 23. Shi F. (2012) Multiproxy surface air temperature field reconstruction for the Arctic covering the past millennium. Quaternary International. 54 (279–280), 446. https://doi: 10.3354/cr01112
  24. 24. Shichi K., Takahara H., Krivonogov S., Bezrukova E., Kashiwaya K., Takehara A., Nakamura T. (2009) Late Pleistocene and Holocene vegetation and climate records from Lake Kotokel, central Baikal region. Quaternary International. 205, 98–110. https://doi.org/10.1016/j.quaint.2009.02.005.
  25. 25. Sturm M. (1979) Origin and composition of clastic varves. Moraines and Varves. Rotterdam: A.A. Balkema, 281–285.
  26. 26. Takahara H., Shinya S., Harrison S., Miyoshi N., Morita Y., Uchiyama T. (2000) Pollen-based reconstructions of Japanese biomes at 0,6000 and 18,000 14C yr BP. Journal of Biogeography. 27, 665–683. https://doi.org/10.1046/j.1365-2699.2000.00432.x
  27. 27. Zi-Chen L. I., Wen-Bin S. U. N., LIANG C. X., Xu-Huang X. I. N. G., Qing-Xiang L. I. (2023) Arctic warming trends and their uncertainties based on surface temperature reconstruction under different sea ice extent scenarios. Advances in Climate Change Research. 14 (3), 335–346. https://doi.org/10.1016/j.accre.2023.06.003
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library