RAS Earth ScienceГеохимия Geochemistry International

  • ISSN (Print) 0016-7525
  • ISSN (Online) 3034-4956

Provenance changes of the holocene deposits of Oga and Tsivolki bays (Novaya Zemlya archipelago) according to SR, ND, PB isotope data

PII
10.31857/S0016752524010053-1
DOI
10.31857/S0016752524010053
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 1
Pages
63-76
Abstract
The paper is devoted to the Sr-, Nd-, Pb-isotope data obtained for two cores of bottom sediments taken in the Oga and Tsivolki bays of the Severny Island of the Novaya Zemlya archipelago. The studied sequence of sediments from Oga Bay has been accumulated over the last thousand years. The 87Sr/86Sr ratio decreases from top to bottom down the section from 0.72225 to 0.71995, the value of εNd varies from –6.1 to –5.5. The Pb isotopic composition varies within narrow limits: the 206Pb/204Pb ratio from 19.107 to 19.139, the 207Pb/204Pb ratio from 15.632 to 15.635, and the 208Pb/204Pb ratio from 38.568 to 38.635. A rapid decrease in the 87Sr/86Sr ratio at a relatively stable neodymium and lead isotope composition indicates a change in the source of the clastogenic material. This can be explained by the fact that the material of the destruction of Permian clay shales, and then the Devonian-Silurian sedimentary carbonates, first entered the area of glacier abrasion and further, respectively, into the sedimentation zone. The sediment column from the Tsivolki Bay was formed over a little more than 10 thousand years. Based on the Sr, Nd, and Pb isotope ratios, these bottom sediments are divided into lower and upper parts: before and after 150 cm (or ~3500 years). In the lower part of the column, the 87Sr/86Sr ratio increases from 0.72055 to 0.72580, the value of εNd remains approximately the same and varies around –8.2. In the upper part, the 87Sr/86Sr ratio drops to 0.72049 in the near-surface layer; at the same time, the value of εNd increases to –6.4. At the boundary of these two units, the 206Pb/204Pb ratio abruptly changes from about 18.0 in the lower part to 19.3 in the upper part and 208Pb/204Pb from about 36.5 in the lower part to 38.7 in the upper part of the section. The change in the Sr, Nd, and Pb isotope characteristics is likely a reflection of changes in the composition of the rocks in the area where the basin was removed, which is now being eroded by the glacier. Comparison with modern sources supplying clastic material to the Kara Sea showed that the material inputs the Oga and Tsivolki bays only from Novaya Zemlya.
Keywords
стронций неодим свинец ледник источники сноса реконструкция
Date of publication
21.01.2024
Year of publication
2024
Number of purchasers
0
Views
40

References

  1. 1. Басов В.А., Василенко Л.В., Вискунова К.Г., Кораго Е.А., Корчинская М.В., Куприянова Н.В., Повышева Л.Г., Преображенская Э.Н., Пчелина Т.М., Столбов Н.М., Суворова Е.Б., Супруненко О.И., Суслова В.В., Устинов Н.В., Устрицкий В.И. & Фефилова Л.А. (2009). Эволюция обстановок осадконакопления Баренцево-Северо-Карского палеобассейна в фанерозое. Нефтегазовая геология. Теория и практика. 4 (1), 1-3.
  2. 2. Горшков С.Г., Алексеев В.Н., Фалеев В.И. (1980). Атлас океанов. Северный Ледовитый океан. М.: Наука, 200 с.
  3. 3. Государственная геологическая карта Российской Федерации, лист S-38-40, масштаб 1:1000000 (1999) Отв. редактор Лопатин Б.Г., Санкт-Петербургская картографическая фабрика ВСЕГЕИ.
  4. 4. Дубинина Е.О., Коссова С.А., Мирошников А.Ю., Фяйзулина Р.В. (2017) Изотопные (δD, δ18O) параметры и источники опресненных вод Карского моря. Океанология. 57(1), 38-48. DOI: 10.7868/S003015741701004X
  5. 5. Кораго Е.А., Ковалева Г.Н., Щеколдин Р.А., Ильин В.Ф., Гусев Е.А., Крылов А.А.1, Горбунов Д.А. (2022) Геологическое строение архипелага Новая Земля (Запад Российской Арктики) и особенности тектоники Евразийской Арктики. Геотектоника. 2, 21-57. DOI 10.31857/S0016853X22020035
  6. 6. Маслов А.В., Кузнецов А.Б, Политова Н.В., Шевченко В.П., Козина Н.В., Новигатский А.Н., Кравчишина М.Д., Алексеева Т.Н. (2020) Распределение редких и рассеянных элементов и изотопный состав Nd, Pb и Sr в поверхностных осадках Баренцева моря. Геохимия. 65(6), 566-582.
  7. 7. Maslov A.V., Kuznetsov A.B., Politova N.V., Shevchenko V.P., Kozina N.V., Novigatsky A.N., Kravchishina M.D., Alexeeva T.N. (2020) Distribution of trace and rare-earth elements, and Nd, Pb, And Sr isotopes in the surface sediments of the Barents Sea. Geochem. Int. 58(6), 687-703.
  8. 8. Маслов А.В., Шевченко В.П., Кузнецов А.Б., Штайн Р. (2018) Геохимическая и Sr-Nd-Pb-изотопная характеристика осадочного материала, переносимого дрейфующими льдами Северного Ледовитого океана. Геохимия. 8, 729-744.
  9. 9. Maslov A.V., Shevchenko V.P., Kuznetsov A.B., Stein R. (2018) Geochemical and Sr–Nd–Pb-isotope characteristics of ice-rafted sediments of the Arctic Ocean. Geochem. Int. 58(8), 751-765.
  10. 10. Benn D.I., Evans D.J.A. Glaciers & glaciation. Routledge, 2014.
  11. 11. Dutton A., Carlson A.E., Long A.J., Milne G.A., Clark P.U., DeConto R., … Raymo M.E. (2015). Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science. 349(6244), aaa4019–aaa4019. doi:10.1126/science.aaa4019.
  12. 12. Dyer B., Austermann J., D’Andrea W.J., Creel R.C., Sandstrom M.R., Cashman M., Rovere A., Raymo M.E. (2021) Sea level trends across the Bahamas constrain peak last interglacial ice melt. PNAS. 118, e2026839118. https://doi.org/10.1073/pnas.2026839118.
  13. 13. Eisenhauer A., Meyer H., Rachold V., Tütken T., Wiegand B., Hansen B.T., Spielhagen R.F., Lindemann F., Kassens H. (1999) Grain size separation and sediment mixing in Arctic Ocean sediments: evidence from the strontium isotope systematic. Chemical Geology. 158, 173-188. https://doi.org/10.1016/S0009-2541 (99)00026-1
  14. 14. Fagel N., Innocent C., Gariepy C., Hillaire-Marcel C. (2002) Sources of Labrador Sea sediments since the last glacial maximum inferred from Nd-Pb isotopes. Geochim. Cosmochim. Acta. 66(14), 2569-2581. https://doi.org/10.1016/S0016-7037 (02)00866-9
  15. 15. Gartside M. (1996) Sources et inventaire du plomb anthropique dans les sediments de l’Océan Arctique profond. Département des Sciences de la Terre. Université du Québec à Montréal, Montréal, p. 79.
  16. 16. Goswami V., Singh S.K., Bhushan R., Rai V.K. (2012), Temporal variations in 87Sr/86Sr and ɛNd in sediments of the southeastern Arabian Sea: Impact of monsoon and surface water circulation. Geochem. Geophys. Geosyst. 13, Q01001, doi:10.1029/2011GC003802
  17. 17. Guo L., Semiletov I., Gustafsson Ö., Ingri J., Andersson P., Dudarev O., White D. (2004) Characterization of Siberian Arctic coastal sediments: Implications for terrestrial organic carbon export. Global Biogeochemical Cycles. 18(1). https://doi.org/10.1029/2003GB002087
  18. 18. Harrison J.C., St-Onge M.R., Petrov O.V., Strelnikov S.I., Lopatin B.G., Wilson F.H., Tella S., Paul D., Lynds T., Shokalsky S.P., Hults C.K., Bergman S., Jepsen H.F., Solli A. (2011) Geological Survey of Canada, “A” Series Map 2159A, 9 sheets; 1 DVD, https://doi.org/10.4095/287868
  19. 19. IBCAO https://www.gebco.net/data_and_products/gridded_bathymetry_data/arctic_ocean/ (доступ от 31.03.2023)
  20. 20. Innocent C., Fagel N., Hillaire-Marcel C. (2000) Sm-Nd isotope systematics in deep-sea sediments: Clay-size versus coarser fractions. Mar. Geol. 168, 79–87. doi:10.1016/S0025-3227(00)00052-9
  21. 21. Lightfoot P.C., Hawkesworth C.J., Hergt J., Naldrett A.J., Gorbachev N.S., Fedorenko V.A., Doherty W. (1993) Remobilisation of the continental lithosphere by a mantle plume: major-, trace-element, and Sr-, Nd-, and Pb-isotope evidence from picritic and tholeiitic lavas of the Noril’sk District, Siberian Trap, Russia. Contrib. Mineral. Petrol. 114, 171-188. https://doi.org/10.1007/BF00307754
  22. 22. Lorenz H., Gee D. G., Korago E., Kovaleva G., McClelland W.C., Gilotti J.A., Frei D. (2013) Detrital zircon geochronology of Palaeozoic Novaya Zemlya - a key to understanding the basement of the Barents Shelf. Terra Nova. 25(6), 496-503. doi:10.1111/ter.12064
  23. 23. Maccali J., Hillaire-Marcel C., Carignan J., Reisberg L.C. (2013) Geochemical signatures of sediments documenting Arctic sea-ice and water mass export through Fram Strait since the Last Glacial Maximum. Quat. Sci. Rev. 64, 136-15. https://doi.org/10.1016/j.quascirev.2012.10.029
  24. 24. Maccali J., Hillaire-Marcel C., Not C. (2018) Radiogenic isotope (Nd, Pb, Sr) signatures of surface and sea ice-transported sediments from the Arctic Ocean under the present interglacial conditions. Polar Res. 37, 1, DOI: 10.1080/17518369.2018.1442982
  25. 25. McArthur J.M., Howarth R.J., Shields G.A., Zhou Y. (2020) Chapter 7 - Strontium Isotope Stratigraphy, Editor(s): Felix M. Gradstein, James G. Ogg, Mark D. Schmitz, Gabi M. Ogg / Geologic Time Scale. Elsevier, 211-238. https://doi.org/10.1016/B978-0-12-824360-2.00007-3
  26. 26. Meyer I., Davies G.R., Stuut J.-B.W. (2011) Grain size control on Sr-Nd isotope provenance studies and impact on paleoclimate reconstructions: An example from deep-sea sediments offshore NW Africa. Geochem. Geophys. Geosyst. 12, Q03005. doi:10.1029/2010GC003355
  27. 27. Millot R., Allègre C.J., Gaillardet J., Roy S. (2004) Lead isotopic systematics of major river sediments: a new estimate of the Pb isotopic composition of the Upper Continental Crust. Chem. Geol. 203, 75-90. https://doi.org/10.1016/j.chemgeo.2003.09.002
  28. 28. Rusakov V., Kuz’mina Т., Borisov A., Gromyak I, Dogadkin D., Romashova Т., Solovi’eva G., Lukmanov R. (2022a) A drastic change in glacial dynamics at the beginning of the seventeenth century on Novaya Zemlya coincides in time with the strongest volcanic eruption in Peru and the Great Famine in Russia. Quat. Res., 1-14. https://doi.org/10.1017/qua.2021.74
  29. 29. Rusakov V.Y., Kuz’mina T.G., Krupskaya V.V., Gromyak I.N., Dogadkin D.N., Romashova T.V. (2022b) Holocene history of the eastern side of Novaya Zemlya from glaciomarine sediment records in the Tsivol’ki Fjord. Boreas. 51, 859-876. https://doi.org/10.1111/bor.12585
  30. 30. Rutberg R.L., Goldstein S.L., Hemming S.R., Anderson R.F. (2005) Sr isotope evidence for sources of terrigenous sediment in the southeast Atlantic Ocean: Is there increased available Fe for enhanced glacial productivity? Paleoceanography. 20, PA1018. doi:10.1029/2003PA000999
  31. 31. Schmitt W. (2007) Application of the Sm-Nd isotope system to the late Quaternary paleoceanography of the Yermak Plateau (Arctic Ocean) (Doctoral dissertation, lmu).
  32. 32. Stevenson R., Poirier A., Véron A., Carignan J., Hillaire-Marcel C. (2015) Late Eocene to present isotopic (Sr–Nd–Pb) and geochemical evolution of sediments from the Lomonosov Ridge, Arctic Ocean: Implications for continental sources and linkage with the North Atlantic Ocean. C. R. Geosci. 347(5–6), 227-235. https://doi.org/10.1016/j.crte.2015.02.008
  33. 33. Swärd H., Andersson P., Hilton R., Vogt C., O’Regan M. (2022) Mineral and isotopic (Nd, Sr) signature of fine-grained deglacial and Holocene sediments from the Mackenzie Trough, Arctic Canada. Arct. Alp. Res. 54(1), 346-367. DOI: 10.1080/15230430.2022.2096425
  34. 34. Taldenkova E. (2023) “Holocene history of the eastern side of Novaya Zemlya from glaciomarine sediment records in the Tsivol’ki Fjord”: Comments. Boreas. 52, 139-144. https://doi.org/10.1111/bor.12603
  35. 35. Taylor S.R., McLennan S.M. (1985) The Continental Crust: Its Composition and Evolution. Blackwells Scientific, Oxford. 312 p.
  36. 36. Tütken T., Eisenhauer A., Wiegand B., Hansen B.T. (2002) Glacial-interglacial cycles in Sr and Nd isotopic composition of Arctic marine sediments triggered by the Svalbard/Barents Sea ice sheet. Mar. Geol. 182, 351-372.
  37. 37. Walter H.J., Hegner E., Diekmann B., Kuhn G., Rutgers van der Loeff M.M. (2002) Provenance and transport of terrigenous sediment in the south Atlantic Ocean and their relations to glacial and interglacial cycles: Nd and Sr isotopic evidence. Geochim. Cosmochim. Acta. 64(22), 3813-3827. https://doi.org/10.1016/S0016-7037 (00)00476-2
  38. 38. Wooden J.L., Czamanske G.K., Fedorenko V.A., Arndt N.T., Chauvel C., Bouse R.M., King B.S.W., Knight R.J., Siems D.F. (1993) Isotopic and trace element constraints on mantle and crustal contributions to Siberian continental flood basalts, Noril’sk area, Siberia. Geochim. Cosmochim. Acta. 57, 3677-3704. https://doi.org/10.1016/0016-7037 (93)90149-Q
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library