- PII
- S30344956S0016752525080051-1
- DOI
- 10.7868/S3034495625080051
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 70 / Issue number 8
- Pages
- 657-674
- Abstract
- Distribution of dissolved molybdenum, tungsten, and vanadium was investigated in the northeastern part of the Black Sea down to a depth of 320 m. The depth of hydrogen sulfide appearance (the onset of the anaerobic zone) was about 165 m (at a potential density ~16.2 kg m–3) in the studied region. Water samples representing dissolved (< 0.45 μm) species and dissolved plus labile particulate species of the elements were collected in July 2016 and 2017. The concentration of dissolved Mo increased with depth in the oxic zone, from 36 to 39 nmol/kg, and showed no difference from the sum of dissolved and particulate forms. In the anoxic, molybdenum decreased with the appearance of more than ~8 μM hydrogen sulfide reaching 3.3 nmol/kg at 320 m. The concentration of tungsten decreased from 160 pmol/kg at the surface to 113 pmol/kg at the redox interface (in the suboxic layer at depth 150m) in the presence of particulate manganese. As Mn oxyhydroxides dissolved in the hydrogen sulfide zone, W concentrations increased to 221 pmol/kg at the depth 180m, along with an increase in dissolved Mn. The distribution of W at the redox interface is controlled by the sorption properties of manganese oxide. Dissolved vanadium was depleted at a depth of 5 m and increased with depth in the oxic zone to 13 nmol/kg, with a decrease in the suboxic zone (down to 7.1 nmol/kg). In the anoxic zone, a maximum V concentration (up to 15.2 nmol/kg) was observed, coinciding with the maximum of dissolved Mn. The calculated balance of Mo and V in the Black Sea showed that about 1200 of Mo and 1200 of V are buried in sediments annually. As for tungsten, it is assumed its significant supply to the Black Sea in the form of suspended and colloidal matter from rivers, transformed in the process of suboxic diagenesis in sediments.
- Keywords
- молибден ванадий вольфрам водная толща Черное море редокс-условия
- Date of publication
- 23.12.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 30
References
- 1. Виноградов М.Е., Налбандов Ю.Р. (1990) Влияние изменений плотности воды на распределение физических, химических и биологических характеристик экосистемы пелагиали Черного моря. Океанология. 30(5), 769–777.
- 2. Дубинин А.В., Демидова Т.П., Кременецкий В.В., Кокрятская Н.М., Римская-Корсакова М.Н., Якушев Е.В. (2012) Определение восстановленных форм серы в анаэробной зоне Черного моря: сравнение методов спектрофотометрии и йодометрии. Океанология. 52(2), 200–209.
- 3. Дубинин А.В., Свальнов В.Н., Бережная Е.Д., Римская-Корсакова М.Н., Демидова Т.П. (2013) Геохимия редких и рассеянных элементов в осадках и марганцевых микроконкрециях Ангольской котловины. Литология и полезные ископаемые. (3), 191–214.
- 4. Римская-Корсакова М.Н., Бережная Е.Д., Дубинин А.В. (2017) Определение молибдена, вольфрама и ванадия в воде Атлантического океана методом ИСП-МС после концентрирования твердофазной экстракцией с 8-оксихинолином. Океанология. 57(4), 587–596.
- 5. Савенко А.В., Бреховских В.Ф., Покровский О.С. (2014) Миграция растворенных микроэлементов в зоне смешения вод Волги и Каспийского моря (по многолетним данным). Геохимия. 59(7), 590–604.
- 6. Savenko A. V., Brekhovskikh V. F., Pokrovskii O. S. (2014) Migration of dissolved trace elements in the mixing zone between Volga River water and Caspian seawater: Results of observations over many years. Geochem. Int. 52(7), 533–547.
- 7. Стрекопытов С.В. (1998) Молибден и вольфрам в океанских осадках и конкрециях. Геохимия. (9), 936–943.
- 8. Strekopytov S.V. (1998) Molybdenum and tungsten in oceanic sediments and nodules. Geochem. Int. 36(9), 838–845.
- 9. Якушев Е.В., Виноградова Е.Л., Дубинин А.В., Костылева А.В., Меньшикова Н.М., Пахомова С.В. (2012) Об определении низких концентраций кислорода методом Винклера. Океанология. 52(1), 131–138.
- 10. Andrews J.E., Brimblecombe P., Jickells T.D., Liss P.S. (1996) An introduction to environmental chemistry. Oxford: Blackwell Science, 209 p.
- 11. Audry S., Blanc G., Schäfer J., Robert S. (2007) Effect of estuarine sediment resuspension on early diagenesis, sulfide oxidation and dissolved molybdenum and uranium distribution in the Gironde estuary, France. Chemical Geology. 238, 149–167.
- 12. Brucker R., Böning P., Siebert C., Schoenberg R. (2009) Molybdenum-isotope fractionation in the Black Sea as a consequence of the chemical speciation in modern and ancient anoxic basins. Geochimica et Cosmochimica Acta. 73(13), A142.
- 13. Collier R.W. (1984) Particulate and dissolved vanadium in the North Pacific Ocean. Nature. 309, 441.
- 14. Colodner D., Sachs J., Turchyn A., Deuser W., Hemming S., Fehrenbacher J., Peterson L., Macko S., Beaufort L. (1995) Molybdenum isotope variations in the Black Sea. Earth and Planetary Science Letters. 135(1–4), 1–10.
- 15. Crusius J., Calvert S., Pedersen T., Sage D. (1996) Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition. Earth and Planetary Science Letters. 145(1–4), 65–78.
- 16. Dahl T.W., Chappaz A., Fitts J.P., Lyons T.W., Reinhard C.T. (2017) Molybdenum bioavailability in early Paleozoic oceans: The role of organic matter and sulfide. Geochimica et Cosmochimica Acta. 201, 235–251.
- 17. Dellwig O., Leipe T., März C., Glockzin M., Pollehne F., Brumsack H.-J. (2010) A new analytical approach for monitoring of redox-sensitive compounds in marine sediments. Continental Shelf Research. 30(12), 1330–1342.
- 18. Dellwig O., Dellwig T., Leipe T., Pollehne F., Brumsack H.-J. (2019) Redox-sensitive trace metals in the water column of the Black Sea: Distribution and geochemical behavior. Marine Chemistry. 214, 103672.
- 19. Dubinin A.V., Demidova T.P., Dubinina E.O., RimskayaKorsakova M.N., Semilova L.S, Berezhnaya E.D., Klyuvitkin A.A., Kravchishina M. D., Belyaev N.A. (2022) Sinking particles in the Black Sea waters: vertical fluxes of elements and pyrite to the bottom, isotopic composition of pyrite sulfur, and hydrogen sulfide production. Chem. Geol. 606, 120996
- 20. Emerson S., Huested S. (1991) Ocean anoxia and the concentrations of molybdenum and vanadium in seawater. Marine Chemistry. 34(3–4), 177–196.
- 21. Erickson B.E., Helz G.R. (2000) Thermodynamic basis for the geochemical cycling of molybdenum in sulfidic environments. In: Inskeep W.P., McDermott T.R. (eds) Environmental Microbe–Metal Interactions. Washington, DC: ASM Press, pp. 119–141.
- 22. Firdaus M.L., Norisuye K., Seike Y., Ueda A. (2008) Determination of tungsten in river water by isotope-dilution ICP-MS. Analytical Sciences. 24(11), 1481–1485.
- 23. Gaillardet J., Viers J., Dupré B. (2003) Trace elements in river waters. In: Holland H.D., Turekian K.K. (eds) Treatise on Geochemistry. Oxford: Elsevier, vol. 5, pp. 225–272.
- 24. Gürkan R., Altunay N., Kılıç E. (2017) A new method for vanadium speciation in bottled drinking waters and tea infusions by ultrasound-assisted ionic liquid dispersive liquid–liquid microextraction. Food Chemistry. 231, 203–211.
- 25. Hein J.R., Mizota C., Fauth G. (2013) Geochemistry of Fe–Mn crusts and nodules. In: Scott S.D. (ed) Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits. London: Geological Society, Special Publications, vol. 384, pp. 21–50.
- 26. Helz G.R., Vairavamurthy A., Kim J.-D., Cox R.P. (2011) Formation of Fe–Mo–S phases in anoxic waters: Evidence from X-ray absorption spectroscopy. Geochimica et Cosmochimica Acta. 75(19), 5515–5527.
- 27. Ho P., Lee J.-M., Heller M.I., Lam P.J., Shiller A.M. (2018) The distribution of dissolved and particulate Mo and V along the U.S. GEOTRACES East Pacific Zonal Transect (GP16): The roles of oxides and biogenic particles in their distributions in the oxygen deficient zone and the hydrothermal plume. Mar. Chem. 201, 242–255.
- 28. Huang X., Zheng H., Zhang C., Zhang Y., Zhu M., Li G., Algeo T.J. (2015) Vanadium cycling in ancient oceans: A critical review. Earth-Science Reviews. 149, 1–17.
- 29. Jørgensen B.B., Fossing H., Wirsen C.O., Jannasch H.W. (1991) Sulfide oxidation in the anoxic Black Sea chemocline. Deep Sea Res. Part A. 38 (Suppl. 2), S1083–S1103.
- 30. Lian J., Wang H., He H., Huang W., Yang M., Zhong Y., Peng P. (2021) The reaction of amorphous iron sulfide with Mo(VI) under different pH conditions. Chemosphere. 266, 128846.
- 31. Miller C.A., Peucker-Ehrenbrink B., Walker B.D., Marcantonio F. (2011) Re-assessing the surface cycling of molybdenum and rhenium. Geochim. Cosmochim. Acta. 75(23), 7146–7179.
- 32. Mohajerin T.J., Helz G.R., White C.D., Johannesson K.H. (2014) Tungsten speciation in sulfidic waters: Determination of thiotungstate formation constants and modeling their distribution in natural waters. Geochim. Cosmochim. Acta. 144, 157–172.
- 33. Mohajerin T.J., Helz G.R., Johannesson K.H. (2016) Tungsten– molybdenum fractionation in estuarine environments. Geochim. Cosmochim. Acta. 177, 105–119.
- 34. Morford J.L., Emerson S. (1999) The geochemistry of redox sensitive trace metals in sediments. Geochim. Cosmochim. Acta. 63(11–12), 1735–1750.
- 35. Murray J.W., Codispoti L.A., Friederich G.E. (1995) The suboxic zone in the Black Sea. In Aquatic Chemistry: Interfacial and Interspecies Processes. ACS Advances in Chemistry Series (Eds. Huang C. P., O’Melia R., Morgan J. J.), 244, 157–176.
- 36. Murphy J., Riley J.P. (1962) A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta. 27, 31–36.
- 37. Nägler T.F., Neubert N., Böttcher M.E., Dellwig O., Schnetger B. (2011) Molybdenum isotope fractionation in pelagic euxinia: Evidence from the modern Black and Baltic Seas. Chem. Geol. 289(1–2), 1–11.
- 38. Neretin L.N., Volkov I.I., Böttcher M.E., Grinenko V.A. (2001) A sulfur budget for the Black Sea anoxic zone. Deep Sea Res. Part I. 48(12), 2569–2593.
- 39. Neretin L.N., Volkov I.I., Rozanov A.G., Demidova T.P., Falina A.S. (2006) Biogeochemistry of the Black Sea anoxic zone with a reference to sulphur cycle. In: Past and Present Water Column Anoxia (Ed. Neretin L. N.) Kluwer Academic Publishers, Dordrecht, 67–104.
- 40. Owens J.D., Reinhard C.T., Rohrssen M., Love G.D., Lyons T.W. (2016) Empirical links between trace metal cycling and marine microbial ecology during a large perturbation to Earth’s carbon cycle. Earth Planet. Sci. Lett. 449, 407–417.
- 41. Özsoy E., Ünlüata Ü. (1997) Oceanography of the Black Sea: A review of some recent results. Earth-Sci. Rev. 42(4), 231–272.
- 42. Pakhomova S., Yakushev E.V. (2013) Manganese and iron at the redox interfaces in the Black Sea, the Baltic Sea, and the Oslo Fjord. In Chemical Structure of Pelagic Redox Interfaces: Observation and Modeling (Ed. Yakushev E. V.) Springer, Berlin Heidelberg, 67–94.
- 43. Piper D.Z., Calvert S.E. (2011) Holocene and late glacial palaeoceanography and palaeolimnology of the Black Sea: Changing sediment provenance and basin hydrography over the past 20,000 years. Geochim. Cosmochim. Acta. 75(19), 5597–5624.
- 44. Pokrovsky O.S., Viers J., Shirokova L.S., Shevchenko V.P., Filipov A.S., Dupré B. (2010) Dissolved, suspended, and colloidal fluxes of organic carbon, major and trace elements in the Severnaya Dvina River and its tributary. Chem. Geol. 273(1–2), 136–149.
- 45. Pokrovsky O., Schott J. (2002) Iron colloids/organic matter associated transport of major and trace elements in small boreal rivers and their estuaries (NW Russia). Chem. Geol. 190(1–4), 141–179.
- 46. Rickard D. (2006) The solubility of Fe S. Geochim. Cosmochim. Acta. 70(22), 5779–5789.
- 47. Rolison J.M., Stirling C.H., Middag R., Rijkenberg M.J.A. (2017) Uranium stable isotope fractionation in the Black Sea: Modern calibration of the 238U/235U paleo-redox proxy. Geochim. Cosmochim. Acta. 203, 69–88.
- 48. Rudnick R.L., Gao S. (2003) 3.01 – Composition of the Continental Crust. In Treatise on Geochemistry (Eds. Holland H. D., Turekian K. K.). Pergamon, Oxford, 1–64.
- 49. Van der Sloot H.A., Hoede D., Hamburg G., Woittiez J.R.W., van der Weijden C.H. (1990) Trace elements in suspended matter from the anoxic hypersaline Tyro and Bannock Basins (eastern Mediterranean). Mar. Chem. 31(1–3), 187–203.
- 50. Scott C., Lyons T.W. (2012) Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: Refining the paleoproxies. Chem. Geol. 324–325, 19–27.
- 51. Shaffer G. (1986) Phosphate pumps and shuttles in the Black Sea. Nature. 321(6069), 515–517.
- 52. Sohrin Y., Isshiki K., Kuwamoto T., Nakayama E. (1987) Tungsten in north pacific waters. Mar. Chem. 22(2–4), 95–103.
- 53. Sohrin Y., Matsui M., Nakayama E. (1999) Contrasting behavior of tungsten and molybdenum in the Okinawa Trough, the East China Sea and the Yellow Sea. Geochim. Cosmochim. Acta. 63(19–20), 3457–3466.
- 54. Stookey L.L. (1970) Ferrozine – a new spectrophotometric reagent for iron. Analytical Chemistry. 42(7), 779–781.
- 55. Strady E., Blanc G., Schäfer J., Coynel A., Dabrin A. (2009) Dissolved uranium, vanadium and molybdenum behaviours during contrasting freshwater discharges in the Gironde Estuary (SW France). Estuar. Coast. Shelf Sci. 83(4), 550–560.
- 56. Tribovillard N., Algeo T.J., Lyons T., Riboulleau A. (2006) Trace metals as paleoredox and paleoproductivity proxies: An update. Chem. Geol. 232(1–2), 12–32.
- 57. Ünlülata Ü., Oğuz T., Latif M.A., Özsoy E. (1990) On the Physical Oceanography of the Turkish Straits. In The Physical Oceanography of Sea Straits (Ed. Pratt L. J.). Springer Netherlands, Dordrecht, 25–60.
- 58. Vorlicek T.P., Helz G.R., Chappaz A., Vue P., Vezina A., Hunter W. (2018) Molybdenum burial mechanism in sulfidic sediments: Iron-Sulfide pathway. ACS Earth and Space Chemistry. 2(6), 565–576.
- 59. Wang D., Sañudo-Wilhelmy S.A. (2008) Development of an analytical protocol for the determination of V (IV) and V (V) in seawater: Application to coastal environments. Mar. Chem. 112(1–2), 72–80.
- 60. Yakushev E.V., Chasovnikov V.K., Debolskaya E.I., Egorov A.V., Makkaveev P.N., Pakhomova S.V., Podymov O.I., Yakubenko V.G. (2006) The northeastern Black Sea redox zone: Hydrochemical structure and its temporal variability. Deep Sea Res. Part II. 53(17–19), 1769–1786.
- 61. Yiğiterhan O., Murray J.W., Tuğrul S. (2011) Trace metal composition of suspended particulate matter in the water column of the Black Sea. Mar. Chem. 126(1–4), 207–228.