RAS Earth ScienceГеохимия Geochemistry International

  • ISSN (Print) 0016-7525
  • ISSN (Online) 3034-4956

Recalibration of the Equation for Calculating Water Content in Silicate Melt Equilibrated with Aqueous Fluid

PII
S30344956S0016752525080044-1
DOI
10.7868/S3034495625080044
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 8
Pages
645-656
Abstract
Experience in using the previously obtained equation for predicting the limiting solubility of water in a silicate melt showed that for a number of experiments performed in the pressure range from 5 to 20 kbar, the calculated water contents are unrealistically high compared to the experimental values. The sample used in the previous work (containing the results of 412 experiments) was significantly supplemented with experiments from the MELT database. Based on the newly collected total sample consisting of 1241 experiments, the set of variables responsible for the effect of composition on water solubility was revised. The newly calibrated equation for calculating the limiting solubility of water allows an uncertainty of no more than ±0.01 mole fraction, or ±0.25 wt. % predict saturated water contents in silicate melts in the ranges: pressure from atmospheric to 20 kbar; temperatures from 825 to 1550 K, and the sample size used for optimization allows the equation to be used to calculate saturated water contents in a wide range of silicate melts, from komatiite basalts to rhyolites.
Keywords
выборка водонасыщенных экспериментов равновесие силикатный расплав водный флюид
Date of publication
23.12.2025
Year of publication
2025
Number of purchasers
0
Views
27

References

  1. 1. Альмеев Р.Р., Арискин А.А. (1996) ЭВМ-моделирование расплавно-минеральных равновесий в водосодержащей базальтовой системе. Геохимия. (7), 624–636.
  2. 2. Воробьев С.А. (2016) Информатика. Математическая обработка геолого-геохимических данных. Барнаул: Новый формат, 266.
  3. 3. Гирнис А.В. (2023) Распределение редких элементов между оливином и расплавом: обобщение экспериментальных данных. Геохимия. 68 (4), 327–340.
  4. 4. Girnis A.V. (2023) Distribution of rare elements between olivine and melt: synthesis of experimental data. Geochem. Int. 60(4), 327–340.
  5. 5. Гнучев Я.Ю., Бычков Д.А., Коптев-Дворников Е.В. (2023) Новая версия уравнения для расчета насыщенных содержаний воды в силикатных расплавах. Геохимия. 68 (9), 926–937.
  6. 6. Gnuchev Ya.Yu., Bychkov D.A., Koptev-Dvornikov E.V. (2023) New version of the equation for calculating water solubility in silicate melts. Geochem. Int. 60(9), 926–937.
  7. 7. Allabar A., Petri P.L., Eul D., Nowak M. (2022) An empirical H₂O solubility model for peralkaline rhyolitic melts. Contrib. Mineral. Petrol. 177 (5), 52.
  8. 8. Allison C.M., Roggensack K., Clarke A.B. (2022) MafiCH: a general model for H₂O–CO₂ solubility in mafic magmas. Contrib. Mineral. Petrol. 177 (3), 40.
  9. 9. Behrens H., Jantos N. (2001) The effect of anhydrous composition on water solubility in granitic melts. Am. Mineral. 86 (1–2), 14–20.
  10. 10. Bonechi B., Perinelli C., Gaeta M., Tecchiato V., Fabbrizio A. (2020) Amphibole growth from a primitive alkaline basalt at 0.8 GPa: Time-dependent compositional evolution, growth rate and competition with clinopyroxene. Lithos. 354, 105272.
  11. 11. Carroll M.R., Blank J.G. (1997) The solubility of H₂O in phonolitic melts. Am. Mineral. 82 (5–6), 549–556.
  12. 12. Duan X. (2014) A general model for predicting the solubility behavior of H₂O–CO₂ fluids in silicate melts over a wide range of pressure, temperature and compositions. Geochim. Cosmochim. Acta. 125, 582–609.
  13. 13. Iacono-Marziano G., Morizet Y., Le Trong E., Gaillard F. (2012) New experimental data and semi-empirical parameterization of H₂O–CO₂ solubility in mafic melts. Geochim. Cosmochim. Acta. 97, 1–23.
  14. 14. Gaillard F., Scaillet B., Pichavant M., Bény J.M. (2001) The effect of water and fO₂ on the ferric–ferrous ratio of silicic melts. Chem. Geol. 174 (1–3), 255–273.
  15. 15. Holtz F., Behrens H., Dingwell D.B., Johannes W. (1995) H₂O solubility in haplogranitic melts: compositional, pressure, and temperature dependence. Am. Mineral. 80 (1–2), 94–108.
  16. 16. Housh T.B., Luhr J.F. (1991) Plagioclase-melt equilibria in hydrous systems. Am. Mineral. 76 (3–4), 477–492.
  17. 17. Lesne P., Scaillet B., Pichavant M., Iacono-Marziano G., Beny J.M. (2011) The H₂O solubility of alkali basaltic melts: an experimental study. Contrib. Mineral. Petrol. 162 (1), 133–151.
  18. 18. Liu Y., Zhang Y., Behrens H. (2005) Solubility of H₂O in rhyolitic melts at low pressures and a new empirical model for mixed H₂O–CO₂ solubility in rhyolitic melts. Journal of Volcanology and Geothermal Research, 143 (1–3), 219–235.
  19. 19. Moore G., Righter K., Carmichael I.S.E. (1995) The effect of dissolved water on the oxidation state of iron in natural silicate liquids. Contrib. Mineral. Petrol. 120, 170–179.
  20. 20. Moore G., Carmichael I.S.E. (1998) The hydrous phase equilibria (to 3 kbar) of an andesite and basaltic andesite from western Mexico: constraints on water content and conditions of phenocryst growth. Contrib. Mineral. Petrol. 130 (3), 304–319.
  21. 21. Nandedkar R.H., Hürlimann N., Ulmer P., & Müntener O. (2016) Amphibole–melt trace element partitioning of fractionating calc-alkaline magmas in the lower cUNKt: an experimental study. Contrib. Mineral. Petrol. 171, 1–25.
  22. 22. Newman S., Lowenstern J.B. (2002) VolatileCalc: a silicate melt–H₂O–CO₂ solution model written in Visual Basic for excel. Comput. Geosci. 28 (5), 597–604.
  23. 23. Papale P., Moretti R., Barbato D. (2006) The compositional dependence of the saturation surface of H₂O+CO₂ fluids in silicate melts. Chem. Geol. 229 (1–3), 78–95.
  24. 24. Putak Juricek M., Keppler H. (2024) Stability of hydrous basaltic melts at low water fugacity: evidence for widespread melting at the lithosphere-asthenosphere boundary. Contrib. Mineral. Petrol. 179 (11), 97.
  25. 25. Putirka K.D. (2008) Thermometers and barometers for volcanic systems. Reviews in mineralogy and geochemistry. 69 (1), 61–120.
  26. 26. Shishkina T.A., Botcharnikov R.E., Holtz F., Almeev R.R., Portnyagin M.V. (2010) Solubility of H₂O-and CO₂-bearing fluids in tholeiitic basalts at pressures up to 500 MPa. Chem. Geol. 277 (1–2), 115–125.
  27. 27. Shishkina T.A., Botcharnikov R.E., Holtz F., Almeev R.R., Jazwa A.M., Jakubiak A.A. (2014) Compositional and pressure effects on the solubility of H₂O and CO₂ in mafic melts. Chem. Geol. 388, 112–129.
  28. 28. Schmidt B.C., Behrens H. (2008) Water solubility in phonolite melts: Influence of melt composition and temperature. Chem. Geol. 256 (3–4), 259–268.
  29. 29. Tamic N., Behrens H., Holtz F. (2001) The solubility of H₂O and CO₂ in rhyolitic melts in equilibrium with a mixed CO₂–H₂O fluid phase. Chem. Geol. 174 (1–3), 333–347.
  30. 30. Wei C., Xiong X., Wang J., Huang F., & Gao M. (2024) Partitioning of tin between mafic minerals, Fe-Ti oxides and silicate melts: Implications for tin enrichment in magmatic processes. Geochim. Cosmochim. Acta. 372, 81–100.
  31. 31. Witham F., Blundy J., Kohn S.C., Lesne P., Dixon J., Churakov S.V., Botcharnikov R. (2012) SolEx: A model for mixed COHSCl-volatile solubilities and exsolved gas compositions in basalt. Comput. Geosci. 45, 87–97.
  32. 32. Yamashita S. (1999) Experimental study of the effect of temperature on water solubility in natural rhyolite melt to 100 MPa. J. Petrol. 40 (10), 1497–1507.
  33. 33. Zhang Y., Xu Z., Zhu M., Wang H. (2007) Silicate melt properties and volcanic eruptions. Rev. Geophys. 45 (4).
  34. 34. Zhang J., Chang J., Wang R., & Audétat A. (2022) Can post-subduction porphyry Cu magmas form by partial melting of typical lower cUNKtal amphibole-rich cumulates? Petrographic and experimental constraints from samples of the Kohistan and Gangdese arc roots. J. Petrol. 63 (11), 101.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library