- Код статьи
- S3034495625090034-1
- DOI
- 10.7868/S3034495625090034
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 70 / Номер выпуска 9
- Страницы
- 716-726
- Аннотация
- На основе энергодисперсионного (EDS) и волнового дисперсионного (WDS) рентгеноспектрального микроанализа, а также дифракции обратно-рассеянных электронов (EBSD) исследован минерал ферродимолибденит (FeMoS), впервые обнаруженный во внеземных условиях, и сопутствующая минеральная ассоциация в сульфидно-металлическом прожилке обыкновенного хондрита Kunya-Urgench (H5). Ферродимолибденит был обнаружен в виде включений в троилите в земных пирометаморфических породах в 2023 г. Синтетическое соединение такого состава известно как полупроводник с 1960 г. С учетом экспериментальных данных и свойств природной минеральной ассоциации можно предполагать, что ферродимолибденит должен кристаллизоваться из металл-трюилитового расплава при температуре в интервале 1100–1000 °C. Вероятно, закалка металл-сульфидного расплава, обогащенного Mo, Cu и Mn, привела к образованию метастабильной фазы FeMoS ассоциирующей с самородной медью, алабандином (MnFe)S, сульфидами меди и ртути. Присутствие алабандина указывает на резко восстановительные условия (log fO < −4 IW), которые нехарактерны для ударного плавления обыкновенных хондритов. Локальность этого явления указывает на участие восстановителя, вероятно, фазы углерода, содержавшегося в основной массе хондрита, либо привнесенного из метеороида, инициировавшего ударное событие с образованием прожилка. Аномально высокие концентрации Mo (~ 2·10 по отношению к хондриту Cl), Mn, Cu, Hg в Fe-S расплаве не могли возникнуть ни при фракционной кристаллизации больших объемов Fe–FeS расплава, ни при многократном частичном плавлении металла сульфида и силикатов при ударных событиях. Наиболее вероятно, ферродимолибденит и сопутствующие минеральные фазы образовались при ударном плавлении экзогенного сульфидно-металлического агрегата, сформировавшегося в условиях, отличающихся от свойственных образованию основной массы хондрита, предположительно, в области образования углистых хондритов. Альтернативой является гидротермальная активность на родительском теле H хондритов, предпосылки для которой имеются, но граничные условия не установлены.
- Ключевые слова
- ферродимолибденит алабандин ковеллин ртуть обыкновенные хондриты ударные процессы
- Дата публикации
- 08.05.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 26
Библиография
- 1. Иванов А.В., Ярошевский А.А, Иванова М.А. (2019). Минералы метеоритов – новый каталог. Геохимия. 64(8), 869–932.
- 2. Ivanov A.V., Yaroshevskiy A.A., Ivanova M.A. (2019). Meteorite Minerals. Geochem. Int. 64 (8), 931–939.
- 3. Benedix G.K., Ketcham R.A., Wilson L., McCoy T.J., Bogard D.D., Garrison D.H., Herzog G.F., Xue S., Klein J., Middleton R. (2008). The formation and chronology of the PAT 91501 impact-melt L chondrite with vesicle–metal–sulfide assemblages. Geochim. Cosmochim. Acta. 72, 2417–2428.
- 4. Bowers T.S., Campbell A.C., Measures C.I., Spivack A.J., Khadem M., Edmond J.M. (1998). Chemical controls on the composition of vent fluids at 13°–11°N and 21°N, East Pacific Rise. JGR Solid Earth. 93, B5.
- 5. Buchwald V.F. 1975. Handbook of Iron Meteorites. Their History, Distribution, Compositionand Structure. Berkeley: University of California Press. 262 p.
- 6. Brearley A.J. (2006). The Action of Water. IN: Meteorites and the Early Solar System II (Lauretta, D.S. & McSween Jr, H.Y., editors), 587–624.
- 7. Britvin S.N., Murashko M.N., Krzhizhanovskaya M.G., Vereshchagin O.S., Vapnik Ye., Shilovskikh V.V., Lozhkin M.S. and Obolonskaya E.V. (2022a). Nazarovite, Ni12P5, a new terrestrial and meteoritic mineral structurally related to nickelphosphide, Ni3P. American Mineralogist, https://doi.org/10.2138/am2022-8219
- 8. Britvin S.N., Murashko M.N., Vapnik Ye., Polekhovsky Yu.S., Krivovichev S.V. (2017a). Barringerite Fe2P from pyrometamorphic rocks of the Hatrurim Formation, Israel. Geology of Ore Deposits. 59, 619–625.
- 9. Britvin S.N., Murashko M.N., Vapnik Ye., Polekhovsky Yu.S., Krivovichev S.V., Vereshchagin O.S., Vlasenko N.S., Shilovskikh V.V., Zaitsev A.N. (2019a). Zuktamrurite, FeP2, a new mineral, the phosphide analogue of löllingite, FeAs2. Phys. Chem. Miner. 46, 361–369.
- 10. Britvin S.N., Murashko M.N., Vapnik Ye., Polekhovsky Yu.S., Krivovichev S.V., Krzhizhanovskaya M.G., Vereshchagin O.S., Shilovskikh V.V., Vlasenko N.S. (2020a). Transjordanite, Ni2P, a new terrestrial and meteoritic phosphide, and natural solid solutions barringerite–transjordanite (hexagonal Fe2P–Ni2P). Am. Mineralog. 105, 428–436.
- 11. Britvin S.N., Murashko M.N., Vapnik Ye., Polekhovsky Yu.S., Krivovichev S.V., Vereshchagin O.S., Shilovskikh V.V., Vlasenko N.S., Krzhizhanovskaya M.G. (2020b). Halamishite, Ni5P4, a new terrestrial phosphide in the Ni–P system. Phys. Chem. Miner. 2020, 3.
- 12. Britvin S.N., Murashko M.N., Vapnik Ye., Polekhovsky Yu.S., Krivovichev S.V., Vereshchagin O.S., Shilovskikh V.V., Krzhizhanovskaya M.G. (2020c). Negevite, the pyrite-type NiP2, a new terrestrial phosphide. Am. Mineralog. 105, 422–427.
- 13. Britvin S.N., Vapnik Ye., Polekhovsky Yu.S., Krivovichev S.V., Krzhizhanovskaya M.G., Gorelova L.A., Vereshchagin O.S., Shilovskikh V.V., Zaitsev A.N. (2019b). Murashkoite, FeP, a new terrestrial phosphide from pyrometamorphic rocks of the Hatrurim Formation, Southern Levant. Mineral. Petrol. 113, 237–248.
- 14. Burg A., Starinsky A., Bartov Y., Kolodny Y. (1992). Geology of the Hatrurim Formation («Mottled Zone») in the Hatrurim basin. Isr. J. Earth Sci. 40, 107–124.
- 15. Bussell M., Charles A., Petersen U., & Shepherd Th., & Bermudez C., Baxter A. (1990). The Ag-Mn-Pb-Zn vein, replacement, and skarn deposits of Uchucchacua, Peru: studies of structure, mineralogy, metal zoning, Sr isotopes and fluid inclusions. Economic Geology. 85, 1348–1383. 10.2113/gsecongeo.85.7.1348.
- 16. Caillet C., MacPherson G.J., El Goresy A. (1988). Fremdlinge in Vigarano CAI 477B: Assemblages, compositions, and possible fractionation history. 19th Lunar Planet. Sci. Conf.
- 17. Campbell A.J., Simon S.B., Humayun M., Grossman L. (2003) Chemical Evolution of Metal in Refractory Inclusions in CV3 Chondrites. Geochim. Cosmochim. Acta. 67, 3119–3134.
- 18. Chabot N.L., Campbell A.J., Jones J.H., Humayun M., Agee C.B. (2003) An experimental test of Henry’s Law in solid metal-liquid metal systems with implications for iron meteorites. Meteorit. Planet. Sci. 38, 181–196.
- 19. Chevrel R., Sergent M., Meury J.L., Quan D.T. (1974). Proprietes Magnetiques et electriques en relation avec Leur Structure, des Composes MMo2S4, (M = V, Cr, Fe, Co). J. Solid State Chemistry. 10, 260.
- 20. Chevrel R., Sergent M., Prigent J. (1971). Sur de nouvelles phases sulfurées ternaires du molybdène. J. Solid State Chem. 3, 515–519.
- 21. D’Orazio M., Folco L., Chaussidon M., Rochette P. (2009). Meteorit. Planet. Sci. 44, 221–231.
- 22. Ehlers K., El Gorsey A. (1988) Normal and reverse zoning in niningerite – A novel key parameter to the thermal histories of EH-chondrites. Geochim. Cosmochim. Acta. 52, 877–887.
- 23. El Goresy A., Yabuki H., Ehlers K., Woolum D.S., Pernicka E. (1988) Qingzhen and Yamato 691: A tentative alphabet for the EH chondrite clan. Proc. Nation. Inst. Polar Res. 1, 65–101.
- 24. Fuchs L.H., Blander M. (1977). Molybdenite in calcium-aluminium-rich inclusions in the Allende meteorite. Geochim. Cosmochim. Acta. 41(8), 1170–1175.
- 25. Fujita T., Kojima H., Yanai K. (1999) Origin of metal-troilite aggregates in six ordinary chondrites Antarctic Meteorite Research. Twentythird Symposium on Antarctic Meteorites, NIPR Symposium. 12, 19–35.
- 26. Galuskin E.V., Galuskina I.O., Kusz J., Książek M., Vapnik Y., Zieliński G. (2024 in press) Ferrodimolybdenite, FeMo3+2S4 from Daba-Siwaqa, Jordan – the first natural compound of trivalent molybdenum. Mineralogical Magazine, https://doi.org/10.1180/mgm.2024.82
- 27. Gross H. (1977). The mineralogy of the Hatrurim Formation Israel. Geol. Surv. Isr. Bull. 70, 1–80.
- 28. Guillevic J., le Marouille J.Y., Grandjean D. (1974). Etude structurale de combinaisons sulfurees et seleniees du molybdene. IV. Structures cristallines de CoMo2S4 et de FeMo2S4. Acta Crystallographica. B30, 111–117.
- 29. Ivanova M.A., Kononkova N.N., Nazarov M.A. (2000). Rutile and Mn-rich chromite-bearing sulfide nuggets in an unusual inclusion from the Ghubara L5 chondrite 31st Lunar and Planetary Science Conference. #1715.
- 30. Jarosewich E. (1990). Chemical analyses of meteorite: a compilation of stony and iron meteorite analyses. Meteoritics 25, 323–337.
- 31. Kilburn M.R., Wood B.J. (1997). Metal–silicate partitioning and the incompatibility of S and Si during core formation. Earth Planet. Sci. Lett. 152,139–148.
- 32. Komorowski C., El Goresy A., Miyahara M., Boudouma O., Ma C. (2012). Discovery of Hg–Cu-bearing metal-sulfide assemblages in a primitive H 3 chondrite: Towards a new insight in early solar system processes. Earth Planet. Sci. Lett. 349–350, 261–271. https://doi.org/10.1016/j.epsl.2012.06.039
- 33. Kong P., and Ebihara M. 1997. The origin and nebular history of the metal phase of ordinary chondrites. Geochim. Cosmochim. Acta. 61: 2317–2329.
- 34. Kong P., Ebihara M., Xie X. (1998). Reevaluation of formation of metal nodules in ordinary chondrites. Meteorit. Planet. Sci. 33, 993–998.
- 35. Lin Y., Kimura M. (1998). Petrographic and mineralogical study of new melt rocks and a new enstatite chondrite droplet. Meteorit. Planet. Sci. 33, 501–511.
- 36. Lorenz C., Kurat G., Brandstätter F., Nazarov M.A. (2003). NWA 1235: A phlogopite-bearing enstatite meteorite. 34th Lunar Planet Sci. Conf. #1211.
- 37. Lu Y., Miki T. (2021). Thermodynamics of Solid and Liquid MnS–CrS–FeS Phase in Equilibrium with Molten Fe–Cr–Mn–S Alloy. ISIJ International. 61(9), 2360–2369. https://doi.org/10.2355/isijinternational. ISIJINT 2021-088
- 38. Mason B., Jarosewich E. (1967) The Winona meteorite, Geochim. Cosmochim. Acta. 31, 1097–1099. https://doi.org/10.1016/0016-7037 (67)90083-X
- 39. Murashko M.N, Britvin S.N., Vapnik Y., Polekhovsky Y.S., Shilovskikh V.V., Anatoly N., Zaitsev A.N., Vereshchagin O.S. (2022). Nickolayite, FeMoP, a new natural molybdenum phosphide. Mineralog. Magazine. 86, 749–757, https://doi.org/10.1180/mgm.2022.52
- 40. Odekov T., Muhamed-nazarov S., Ivanov A. (1999). Kunya-Urgench. In: Grossman, J. N. The Meteoritical Bulletin, No. 83, Meteorit. Planet. Sci. 34, 169–186.
- 41. Peter J. & Scott S. (1988). Mineralogy, composition, and fluid-inclusion microthermometry of seafloor hydrothermal deposits in the Southern Trough of Guaymas Basin, Gulf of California. Can. Mineral. 26, 567–587.
- 42. Rambaldi E. (1976) Trace Element Content of Metals from L-Group Chondrites. Earth Planet. Sci. Lett. 31, 224–238.
- 43. Ray D., Ghosh S., Murty S.V.S. (2017). On the possible origin of troilite-metal nodules in the Katol chondrite (L6–7). Meteorit. Planet. Sci. 52, 72–88.
- 44. Rubin A, Ma C. (2021). Meteorite Mineralogy. Cambridge University Press.
- 45. Rubin A.E. (1985). Impact melt products of chondritic material. Rev. Geophys. 23, 277–300.
- 46. Schrader D.L., Lauretta D.S., Connolly jr. H.C., Goreva Y.S., Hill D.H., Domanik K.J., Berger E.L., Yang H., Downs R.T. (2010). Sulfide-rich metallic impact melts from chondritic parent bodies. Meteorit. Planet. Sci. 45(5), 743–758. https://doi.org/10.1111/j.1945-5100.2010.01053.x
- 47. Scott E.R.D. (1973). Large metal nodules in ordinary chondrites. Eos Trans. AGU. 54, 1125–1126.
- 48. Sears D.W., Kallemeyn G.W., Wasson J.T. (1983). Composition and origin of clasts and inclusions in the Abee enstatite chondrite breccia. Earth Planet. Sci. Lett. 62, 180–192.
- 49. Skinner J., Luce D. (1971). Solid solutions of the type (Ca, Mg, Mn, Fe)S and their use as geothennometers for the enstatite chondrites. Am. Mineral. 56, 1269–1296.
- 50. Tomkins A.G., Weinberg R.F., Schaefer B.F., Langenda A. (2013). Disequilibrium melting and melt migration driven by impacts: Implications for rapid planetesimal core formation. Geochim. Cosmochim. Acta. 100, 41–59.
- 51. Vaqueiro P., Kosidowski M.L., Powell A.V. (2002). Structural Distortions of the Metal Dichalcogenide Units in AMo2S4 (A = V, Cr, Fe, Co) and Magnetic and Electrical Properties. Chem. Mater. 14 (3), 1201–1209.
- 52. Wada H., Onoda M., Nozaki H., Kawada I. (1985). The phase relations and homogeneity range of the iron Chevrel compound FexMo6S8–y. J. Less-Common Met. 113, 53–63
- 53. Wasson J.-T., Kallemeyn G.W. (1988). Composition of Chondrites. Philos. Trans. R. Soc. A 328, 535–44.
- 54. Weyrauch M., Horstmann M., Bischoff A. (2017). Chemical variations of sulfides and metal in enstatite chondrites-Introduction of a new classification scheme. Meteorit. Planet. Sci. 53(3), 394–415. https://doi.org/10.1111/maps.13025
- 55. Widom E., Rubin A.E., Wasson J.T. (1986) Composition and formation of metal nodules and veins in ordinary chondrites. Geochim. Cosmochim. Acta. 50, 1989–1995.
- 56. Zhang Y., Sears D.W.G. (1996). The thermometry of enstatite chondrites: A brief review and update. Meteorit. Planet. Sci. 31(5), 647–655. https://doi.org/10.1111/j.1945-5100.1996.tb02038