ОНЗ Геохимия Geochemistry International

  • ISSN (Print) 0016-7525
  • ISSN (Online) 3034-4956

ЭЛЕМЕНТНЫЙ СОСТАВ И ИСТОЧНИКИ ГОРОДСКОЙ ПЫЛИ КРУПНОГО ИНДУСТРИАЛЬНОГО ГОРОДА (КРАСНОЯРСК, РОССИЯ)

Код статьи
S0016752525040059-1
DOI
10.31857/S0016752525040059
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 70 / Номер выпуска 4
Страницы
323-344
Аннотация
Впервые проведено комплексное исследование городской пыли Красноярска, позволившее не только изучить ее элементный состав, но и выявить ряд природных и антропогенных источников ее образования. Образцы пыли (n = 68) отбирали в разных функциональных районах города. В отобранных образцах городской пыли определили содержание 70 элементов. Диаграммы состава (CaO + Na2O) – Al2O3 – K2O и (CaO + Na2O + K2O) – Al2O3 – (Fe2O3 + MgO) показали, что минеральная часть большинства исследуемых образцов пыли Красноярска представлена плагиоклазами. Расчеты коэффициентов обогащения и индексов геоаккумуляции свидетельствуют о загрязнении пыли Красноярска такими элементами, как Co, Sn, Bi, Pb, Mo, Cu, As, Zn, Cd, W, Ag и Sb. Выявлены закономерности аккумулирования микроэлементов в зависимости от локаций отбора проб. Sb в большой степени накапливается в образцах, отобранных на крупных автомагистралях Красноярска, в то время как повышенные содержания As, Cu, W и Zn характерны для образцов, отобранных в промышленных районах города. Метод главных компонент и матрица Пирсона позволили выделить в образцах пыли 6 групп элементов, которые можно отнести к различным природным и антропогенным источникам: Al, Ti, Cr, Fe и Ni – выветривание почв и горных пород; Fe, Co, Ni, Cu и As – выбросы металлургических предприятий и угольных ТЭС; W, Bi, Zn и Mo – тяжелая металлургическая и машиностроительная промышленность; Cu, Cd, Sn и Pb – выбросы автомобильного и железнодорожного транспорта, а также износ металлических деталей и конструкций; Sn и Sb – износ тормозных колодок и шин, выбросы промышленных предприятий; Hg – выветривание почв и горных пород.
Ключевые слова
загрязнение источники промышленные выбросы выбросы автотранспорта геоэкология гумификация
Дата публикации
16.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
3

Библиография

  1. 1. Ермолин М.С., Иванеев А.И., Бржезинский А.С., Карандашев В.К., Мохов А.В., Федотов П.С. (2022). Антропогенный источник золота в московской городской пыли. Журнал аналитической химии. 77(10), 956–966.
  2. 2. Ермолин М.С., Федотов П.С., Карандашев В.К, Дженлода Р.Х., Иванеев А.И., Буркат Т.В., Буркат В.С. (2020). Фракционирование, характеризация и анализ нано- и микрочастиц при оценке вклада металлургического предприятия в загрязнение городской пыли. Журнал аналитической химии. 75(9), 844–853.
  3. 3. Котельникова А.Д., Рогова О.Б., Столбова В.В. (2021). Лантаноиды в почве: поступление, содержание, влияние на растения, генотоксичность (обзор). Почвоведение. (1), 100–119.
  4. 4. Ладонин Д.В. (2018). Элементы платиновой группы в почвах и уличной пыли юго-восточного административного округа г. Москвы. Почвоведение. 3, 274–283.
  5. 5. Acosta J.A., Gabarrón M., Faz A., Martínez-Martínez S., Zornoza R., Arocena J.M. (2015). Influence of population density on the concentration and speciation of metals in the soil and street dust from urban areas. Chemosphere. 134, 328–337. https://doi.org/10.1016/j.chemosphere.2015.04.038
  6. 6. Adachi K., Tainosho Y. (2004). Characterization of heavy metal particles embedded in tire dust. Environ. Int. 30(8), 1009–1017. https://doi.org/10.1016/J.ENVINT.2004.04.004
  7. 7. Alexakis D.E. (2020). Contaminated land by wildfire effect on ultramafic soil and associated human health and ecological risk. Land. 9(11), 1–16. https://doi.org/10.3390/land9110409
  8. 8. Alves C.A., Vicente E.D., Vicente A.M.P., Rienda I.C., Tomé M., Querol X., Amato F. (2020). Loadings, chemical patterns and risks of inhalable road dust particles in an Atlantic city in the north of Portugal. Sci. Total Environ. 737. https://doi.org/10.1016/j.scitotenv.2020.139596
  9. 9. Awadh S.M., Al-Hamdani J.A.J.M.Z. (2019). Urban geochemistry assessment using pollution indices: a case study of urban soil in Kirkuk, Iraq. Environ. Earth Sci. 78(20). https://doi.org/10.1007/s12665-019-8615-3
  10. 10. Barjoee S.S., Azizi M., Yazdani M., Alikhani E., Khaledi, A. (2024). Emission source apportionment of the road dust-bound trace and major elements in Najafabad to the west of Isfahan megacity (Iran) based on multivariate receptor-oriented source models of PMF, PCFA and UNMIX. Environ. Dev. Sustain. 26(4), 10333–10366. https://doi.org/10.1007/s10668-023-03149-5
  11. 11. Birke M., Rauch U. (2000). Urban geochemistry: investigation in Berlin metropolitan area. Environ. Geochem. Health. 22, 233–248. https://doi.org/10.1023/A:1026554308673
  12. 12. Bisht L., Gupta V., Singh A., Gautam A.S., Gautam S. (2022). Heavy metal concentration and its distribution analysis in urban road dust: A case study from most populated city of Indian state of Uttarakhand. Spat. Spatio-temporal Epidemiol. 40. https://doi.org/10.1016/j.sste.2021.100470
  13. 13. Bućko M.S., Magiera T., Pesonen L.J., Janus B. (2010). Magnetic, geochemical, and microstructural characteristics of road dust on roadsides with different traffic volumes – case study from Finland. Water. Air. Soil Pollut. 209, 295–306. https://doi.org/10.1007/s11270-009-0198-2
  14. 14. Candeias C., Vicente E., Tomé M., Rocha F., Ávila P., Alves C. (2020). Geochemical, mineralogical and morphological characterization of road dust and associated health risks. Int. J. Environ. Res. Public Health. 17(5). https://doi.org/10.3390/ijerph17051563
  15. 15. Cao S., Wen D., Chen X., Duan X., Zhang L., Wang B., Qin N., Wei F. (2022). Source identification of pollution and health risks to metals in household indoor and outdoor dust: A cross-sectional study in a typical mining town, China. Environ. Pollut. 293. https://doi.org/10.1016/j.envpol.2021.118551
  16. 16. Cappelletti N., Astoviza M., Morrone M., Tatone L. (2019). Urban geochemistry and potential human health risks in the metropolitan area of Buenos Aires: PAHs and PCBs in soil, street dust, and bulk deposition. Environ. Geochem. Health. 41(2), 699–713. https://doi.org/10.1007/s10653-018-0163-3
  17. 17. Charlesworth S., de Miguel E., Ordóñez A. (2011). A review of the distribution of particulate trace elements in urban terrestrial environments and its application to considerations of risk. Environ. Geochem. Health. 33(2), 103–123. https://doi.org/10.1007/s10653-010-9325-7
  18. 18. Dehghani S., Moore F., Vasiluk L., Hale B.A. (2018). The geochemical fingerprinting of geogenic particles in road deposited dust from Tehran metropolis, Iran: Implications for provenance tracking. J. Geochem. Explor. 190, 411–423. https://doi.org/10.1016/j.gexplo.2018.04.011
  19. 19. Dytłow S., Górka-Kostrubiec B. (2021). Concentration of heavy metals in street dust: an implication of using different geochemical background data in estimating the level of heavy metal pollution. Environ. Geochem. Health. 43(1), 521–535. https://doi.org/10.1007/s10653-020-00726-9
  20. 20. Ermolin M.S., Fedotov P.S., Ivaneev A.I., Karandashev V.K., Fedyunina N.N., Burmistrov A.A. (2018). A contribution of nanoscale particles of road-deposited sediments to the pollution of urban runoff by heavy metals. Chemosphere. 210, 65–75. https://doi.org/10.1016/j.chemosphere.2018.06.150
  21. 21. Ermolin M.S., Ivaneev A.I., Brzhezinskiy A.S., Fedyunina N.N., Karandashev V.K., Fedotov P.S. (2022). Distribution of platinum and palladium between dissolved, nanoparticulate, and microparticulate fractions of road dust. Molecules. 27(18), 6107. https://doi.org/10.3390/molecules27186107
  22. 22. Ermolin M.S., Fedotov P.S., Ivaneev A.I., Karandashev V.K., Burmistrov A.A., Tatsy Y.G. (2016). Assessment of elemental composition and properties of copper smelter-affected dust and its nano- and micron size fractions. Environ. Sci. Pollut. Res. 23. https://doi.org/10.1007/s11356-016-7637-6
  23. 23. Fedotov P.S., Ermolin M.S., Karandashev V.K., Ladonin D.V. (2014). Characterization of size, morphology and elemental composition of nano-, submicron, and micron particles of street dust separated using field-flow fractionation in a rotating coiled column. Talanta. 130, 1–7. https://doi.org/10.1016/J.TALANTA.2014.06.040
  24. 24. Ferreira-Baptista L., De Miguel E. (2005). Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmos. Environ. 39(25), 4501–4512. https://doi.org/10.1016/j.atmosenv.2005.03.026
  25. 25. Filippelli G.M., Morrison D., Cicchella D. (2012). Urban geochemistry and human health. Elements. 8(6), 439–444. https://doi.org/10.2113/gselements.8.6.439
  26. 26. Fujiwara F.G., Gómez D.R., Dawidowski L., Perelman P., Faggi A. (2011). Metals associated with airborne particulate matter in road dust and tree bark collected in a megacity (Buenos Aires, Argentina). Ecol. Indic. 11(2), 240–247. https://doi.org/10.1016/j.ecolind.2010.04.007
  27. 27. Fussell J.C., Franklin M., Green D.C., Gustafsson M., Harrison R.M., Hicks W., Kelly F.J., Kishta F., Miller M.R., Mudway I.S., Oroumiyeh F., Selley L., Wang M., Zhu Y. (2022). A Review of road traffic-derived non-exhaust particles: emissions, physicochemical characteristics, health risks, and mitigation measures. Environ. Sci. Technol. 56(11), 6813–6835. https://doi.org/10.1021/acs.est.2c01072
  28. 28. Gaberšek M., Gosar M. (2021). Towards a holistic approach to the geochemistry of solid inorganic particles in the urban environment. Sci. Total Environ. 763. https://doi.org/10.1016/j.scitotenv.2020.144214
  29. 29. Hanfi M.Y., Seleznev A.A., Yarmoshenko I.V., Malinovsky G., Konstantinova E.Y., Alsafi K.G., Sakr A.K. (2022a). Potentially harmful elements in urban surface deposited sediment of Ekaterinburg, Russia: Occurrence, source appointment and risk assessment. Chemosphere. 307. https://doi.org/10.1016/J.CHEMOSPHERE.2022.135898
  30. 30. Hanfi M.Y., Seleznev A.A., Yarmoshenko I.V., Malinovsky G., Konstantinova E.Y., Alsafi K.G., Sakr A.K. (2022b). Potentially harmful elements in urban surface deposited sediment of Ekaterinburg, Russia: Occurrence, source appointment and risk assessment. Chemosphere. 307. https://doi.org/10.1016/j.chemosphere.2022.135898
  31. 31. Haynes H.M., Taylor K.G., Rothwell J., Byrne P. (2020). Characterization of road-dust sediment in urban systems: a review of a global challenge. J. Soils Sediments. 20(12), 4194–4217. https://doi.org/10.1007/s11368-020-02804-y
  32. 32. Hopke P.K. (2003). Recent developments in receptor modeling. J. Chemom. 17(5), 255–265. https://doi.org/10.1002/cem.796
  33. 33. Hopke P.K. (2016). Review of receptor modeling methods for source apportionment. J. Air Waste Manage. Assoc. 66(3), 237–259. https://doi.org/10.1080/10962247.2016.1140693
  34. 34. Hu X., Zhang Y., Luo J., Wang T., Lian H., Ding Z. (2011). Bioaccessibility and health risk of arsenic, mercury and other metals in urban street dusts from a mega-city, Nanjing, China. Environ. Pollut. 159(5), 1215–1221. https://doi.org/10.1016/j.envpol.2011.01.037
  35. 35. Ivaneev A.I., Brzhezinskiy A.S., Karandashev V.K., Ermolin M.S., Fedotov P.S. (2023). Assessment of sources, environmental, ecological, and health risks of potentially toxic elements in urban dust of Moscow megacity, Russia. Chemosphere. 321. https://doi.org/10.1016/j.chemosphere.2023.138142.
  36. 36. Jordanova N., Jordanova D., Tcherkezova E., Georgieva B., Ishlyamski D. (2021). Advanced mineral magnetic and geochemical investigations of road dusts for assessment of pollution in urban areas near the largest copper smelter in SE Europe. Sci. Total Environ. 792. https://doi.org/10.1016/j.scitotenv.2021.148402
  37. 37. Karandashev V.K., Khvostikov V.A., Nosenko S.V., Burmii Zh.P. (2017). Stable Highly Enriched Isotopes in Routine Analysis of Rocks, Soils, Grounds, and Sediments by ICP-MS. Inorg. Mater. 53(14), 1432–1441. https://doi.org/10.1134/S0020168517140084
  38. 38. Khan M.B., Setu S., Sultana N., Gautam S., Begum B.A., Salam M.A., Jolly Y.N., Akter S., Rahmad M.M., Shil B.C., Afrin Sadea. (2023). Street dust in the largest urban agglomeration: pollution characteristics, source apportionment and health risk assessment of potentially toxic trace elements. Stoch. Environ. Res. Risk Assess. 37(8), 3305–3324. https://doi.org/10.1007/s00477-023-02432-1
  39. 39. Konstantinova E., Minkina T., Konstantinov A., Sushkova S., Antonenko E., Kurasova A., Loiko S. (2020). Pollution status and human health risk assessment of potentially toxic elements and polycyclic aromatic hydrocarbons in urban street dust of Tyumen city, Russia. Environ. Geochem. Health. 44, 409–432. https://doi.org/10.1007/s10653-020-00692-2
  40. 40. Konstantinova E., Minkina T., Sushkova S., Konstantinov A., Rajput V.D., Sherstnev A. (2019). Urban soil geochemistry of an intensively developing Siberian city: A case study of Tyumen, Russia. J. Environ. Manage. 239, 366–375. https://doi.org/10.1016/j.jenvman.2019.03.095
  41. 41. Krishnakumar S., Ramasamy S., Chandrasekar N., Peter T. S., Godson P.S., Gopal V., Magesh N. S. (2017). Spatial risk assessment and trace element concentration in reef associated sediments of Van Island, southern part of the Gulf of Mannar, India. Mar. Pollut. Bull. 115(1–2), 444–450. https://doi.org/10.1016/j.marpolbul.2016.10.067
  42. 42. Krüger H., Thompson M.S., Kobayashi M., Mangano V., Moroni M., Milillo A., Keller L.P., Sasaki S., Zender J., Domingue D. (2024). Understanding the Dust Environment at Mercury: From Surface to Exosphere. Planet. Sci. J. 5(2). https://doi.org/10.3847/PSJ/ad11f5
  43. 43. Krupnova T.G., Rakova O.V., Bondarenko K.A., Saifullin A.F., Popova D.A., Potgieter-Vermaak S., Godoi R.H.M. (2021). Elemental composition of PM2.5 and PM10 and health risks assessment in the industrial districts of Сhelyabinsk, south Ural region, Russia. Int. J. Environ. Res. Public Health. 18(23). https://doi.org/10.3390/ijerph182312354
  44. 44. Krupnova T.G., Rakova O.V., Gavrilkina S.V., Antoshkina E.G., Baranov E.O., Yakimova O.N. (2020). Road dust trace elements contamination, sources, dispersed composition, and human health risk in Chelyabinsk, Russia. Chemosphere. 261. https://doi.org/10.1016/j.chemosphere.2020.127799
  45. 45. Liang S.Y., Cui J.L., Bi X.Y., Luo X.S., Li X.D. (2019). Deciphering source contributions of trace metal contamination in urban soil, road dust, and foliar dust of Guangzhou, southern China. Sci. Total Environ. 695. https://doi.org/10.1016/j.scitotenv.2019.133596
  46. 46. Marín-Sanleandro P., Delgado-Iniesta M.J., Sáenz-Segovia A.F., Sánchez-Navarro A. (2024). Spatial identification and hotspots of ecological risk from heavy metals in urban dust in the city of Cartagena, SE Spain. Sustainability (Switzerland). 16(1). https://doi.org/10.3390/su16010307
  47. 47. Mesquita G.S., Passos E.A., Oliveira S.S., Queiroz A.F.S., Soares S.A.R., Araujo R.G.O. (2024). Geochemical base for As, Co, Cu, Ni, P, Pb, S, V and Zn in road dust collected in areas of oil industry activity in the Metropolitan Region of Salvador, Bahia, Brazil. Microchem. J. 200. https://doi.org/10.1016/j.microc.2024.110304
  48. 48. Moskovchenko D., Pozhitkov R., Soromotin A., Tyurin V. (2022). The content and sources of potentially toxic elements in the road dust of Surgut (Russia). Atmosphere. 13(1). https://doi.org/10.3390/atmos13010030
  49. 49. Moskovchenko D., Pozhitkov R., Ukarkhanova D. (2022a). Geochemistry of street dust in Tyumen, Russia: influence of traffic load. Environ. Sci. Pollut. Res. 29(21), 31180–31197. https://doi.org/10.1007/s11356-021-18013-0
  50. 50. Moskovchenko D., Pozhitkov R., Ukarkhanova, D. (2022b). Geochemistry of street dust in Tyumen, Russia: influence of traffic load. Environ. Sci. Pollut. Res. 29(21), 31180–31197. https://doi.org/10.1007/s11356-021-18013-0
  51. 51. Mostafa M.T., El-Nady H., Gomaa R.M., Abdelgawad H.F., Abdelhafiz M.A., Salman S.A.E., Khalifa I.H. (2024a). Urban geochemistry of heavy metals in road dust from Cairo megacity, Egypt: enrichment, sources, contamination, and health risks. Environ. Earth Sci. 83(1). https://doi.org/10.1007/s1266502311342y
  52. 52. Mostafa M.T., El-Nady H., Gomaa R.M., Abdelgawad H.F., Abdelhafiz M.A., Salman S.A.E., Khalifa I.H. (2024b). Urban geochemistry of heavy metals in road dust from Cairo megacity, Egypt: enrichment, sources, contamination, and health risks. Environ. Earth Sci. 83(1). https://doi.org/10.1007/s12665-023-11342-y
  53. 53. Muller G. (1969). Index of geoaccumulation in sediments of the Rhine River. GeoJournal. 2, 108–118.
  54. 54. Navarro-Ciurana D., Corbella M., Meroño D. (2023). Effects of road dust particle size on mineralogy, chemical bulk content, pollution and health risk analyses. Int. J. Environ. Res. Public Health. 20(17). https://doi.org/10.3390/ijerph20176655
  55. 55. Onuchin A., Kofman G., Zubareva O., Danilova I. (2020). Using an urban snow cover composition – based cluster analysis to zone Krasnoyarsk town (Russia) by pollution level. Pol. J. Environ. Stud. 29(6), 4257–4267. https://doi.org/10.15244/pjoes/118168
  56. 56. Osipova N.A., Filimonenko K.A., Talovskaya A.V., Yazikov E.G. (2015). Geochemical Approach to human health risk assessment of inhaled trace elements in the vicinity of industrial enterprises in Tomsk, Russia. Hum. Ecol. Risk Assess. 21(6), 1664–1685. https://doi.org/10.1080/10807039.2014.972912
  57. 57. Padhye L.P., Jasemizad T., Bolan S., Tsyusko O.V., Unrine J.M., Biswal B.K., Balasubramanian R., Zhang Y., Zhang T., Zhao J., Yang L., Rinklebe J., Wang H., Siddique K.H.V., Bolan N. (2023). Silver contamination and its toxicity and risk management in terrestrial and aquatic ecosystems. Sci. Total Environ. 871. https://doi.org/10.1016/J.SCITOTENV.2023.161926
  58. 58. Rajaram B.S., Suryawanshi P.V., Bhanarkar A.D., Rao C.V.C. (2014). Heavy metals contamination in road dust in Delhi city, India. Environ. Earth Sci. 72(10), 3929–3938. https://doi.org/10.1007/s12665-014-3281-y
  59. 59. Rimashevskaya A.A., Muchkina E.Y., Sutormin O.S., Chuyashenko D.E., Gareev A.R., Tikhnenko S.A., Rimatskya N.V., Kratasyuk V.A. (2024). Bioluminescence inhibition bioassay for estimation of snow cover in urbanised areas within boreal forests of Krasnoyarsk City. Forests. 15(8). https://doi.org/10.3390/f15081325
  60. 60. Rudnick R.L., Gao S. (2014). Composition of the continental сrust. Treatise on Geochemistry: Second Edition. 4, 1–51. https://doi.org/10.1016/B978-0-08-095975-7.00301-6
  61. 61. Sezgin N., Nadeem I., El Afandi G. (2022). Environmental pollution assessment of trace metals in road dust of Istanbul in Turkey. Earth Syst. Environ. 6(1), 189–198. https://doi.org/10.1007/s41748-021-00271-0
  62. 62. Sutherland R.A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ. Geol. 39(6), 611–627. https://doi.org/10.1007/S002540050473/METRICS
  63. 63. Szczepanik D.M., Poczta P., Talianu C., Böckmann C., Ritter C., Stefanie H., Toanca F., Chojnicki B.H., Schüttemeyer D., Stachlewska I.S. (2023). Spatio-temporal evolution of long-range transported mineral desert dust properties over rural and urban sites in Central Europe. Sci. Total Environ. 903. https://doi.org/10.1016/j.scitotenv.2023.166173
  64. 64. Tang R., Ma K., Zhang Y., Mao Q. (2013). The spatial characteristics and pollution levels of metals in urban street dust of Beijing, China. Appl. Geochem. 35, 88–98. https://doi.org/10.1016/j.apgeochem.2013.03.016
  65. 65. Thorpe A., Harrison R.M. (2008). Sources and properties of non-exhaust particulate matter from road traffic: A review. Sci. Total Environ. 400(1–3), 270–282. https://doi.org/10.1016/j.scitotenv.2008.06.007
  66. 66. Thurston G.D., Spengler J.D. (1985). A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston. Atmos. Environ. (1967–1989). 19(1), 9–25. https://doi.org/10.1016/0004-6981 (85)90132-5
  67. 67. Vaiškūnaitė R., Jasiūnienė V. (2020). The analysis of heavy metal pollutants emitted by railway transport. Transport. 35(2), 213–223. https://doi.org/10.3846/TRANSPORT.2020.12751
  68. 68. Varol M., Sünbül M.R., Aytop H., Yılmaz C.H. (2020). Environmental, ecological and health risks of trace elements, and their sources in soils of Harran Plain, Turkey. Chemosphere. 245. https://doi.org/10.1016/j.chemosphere.2019.125592
  69. 69. Vlasov D., Kosheleva N., Kasimov N. (2021). Spatial distribution and sources of potentially toxic elements in road dust and its PM10 fraction of Moscow megacity. Sci. Total Environ. 761. https://doi.org/10.1016/j.scitotenv.2020.143267
  70. 70. Vlasov D., Ramírez O., Luhar A. (2022). Road dust in urban and industrial environments: sources, pollutants, impacts, and management. Atmosphere. 13(4), 1–10. https://doi.org/10.3390/atmos13040607
  71. 71. Yu Y., Li Y., Li B., Shen Z., Stenstrom M.K. (2016). Metal enrichment and lead isotope analysis for source apportionment in the urban dust and rural surface soil. Environ. Pollut. 216, 764–772. https://doi.org/10.1016/j.envpol.2016.06.046
  72. 72. Yuanan H., He K., Sun Z., Chen G., Cheng H. (2020). Quantitative source apportionment of heavy metal(loid)s in the agricultural soils of an industrializing region and associated model uncertainty. J. Hazard. Mater. 391. https://doi.org/10.1016/j.jhazmat.2020.122244
  73. 73. Zacháry D., Jordan G., Völgyesi P., Bartha A., Szabó C. (2015). Urban geochemical mapping for spatial risk assessment of multisource potentially toxic elements – A case study in the city of Ajka, Hungary. J. Geochem. Explor. 158, 186–200. https://doi.org/10.1016/j.gexplo.2015.07.015
  74. 74. Zhang H., Zhang F., Song J., Tan M.L., Kung H.K., Johnson V.C. (2021). Pollutant source, ecological and human health risks assessment of heavy metals in soils from coal mining areas in Xinjiang, China. Environ. Res. 202. https://doi.org/10.1016/j.envres.2021.111702
  75. 75. Zhang Y., Lang J., Cheng S., Li S., Zhou Y., Chen D., Zhang H., Wang H. (2018). Chemical composition and sources of PM1 and PM2.5 in Beijing in autumn. Sci. Total Environ. 630, 72–82. https://doi.org/10.1016/j.scitotenv.2018.02.151
  76. 76. Zheng L., Tang Q., Fan J., Huang X., Jiang C., Cheng H. (2015). Distribution and health risk assessment of mercury in urban street dust from coal energy dominant Huainan City, China. Environ. Sci. Pollut. Res. 22(12), 9316–9322. https://doi.org/10.1007/s11356-015-4089-3
  77. 77. Žibret G. (2019). Influences of coal mines, metallurgical plants, urbanization and lithology on the elemental composition of street dust. Environ. Geochem. Health. 41(3), 1489–1505. https://doi.org/10.1007/s10653-018-0228-3
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека