- Код статьи
- S0016752525040059-1
- DOI
- 10.31857/S0016752525040059
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 70 / Номер выпуска 4
- Страницы
- 323-344
- Аннотация
- Впервые проведено комплексное исследование городской пыли Красноярска, позволившее не только изучить ее элементный состав, но и выявить ряд природных и антропогенных источников ее образования. Образцы пыли (n = 68) отбирали в разных функциональных районах города. В отобранных образцах городской пыли определили содержание 70 элементов. Диаграммы состава (CaO + Na2O) – Al2O3 – K2O и (CaO + Na2O + K2O) – Al2O3 – (Fe2O3 + MgO) показали, что минеральная часть большинства исследуемых образцов пыли Красноярска представлена плагиоклазами. Расчеты коэффициентов обогащения и индексов геоаккумуляции свидетельствуют о загрязнении пыли Красноярска такими элементами, как Co, Sn, Bi, Pb, Mo, Cu, As, Zn, Cd, W, Ag и Sb. Выявлены закономерности аккумулирования микроэлементов в зависимости от локаций отбора проб. Sb в большой степени накапливается в образцах, отобранных на крупных автомагистралях Красноярска, в то время как повышенные содержания As, Cu, W и Zn характерны для образцов, отобранных в промышленных районах города. Метод главных компонент и матрица Пирсона позволили выделить в образцах пыли 6 групп элементов, которые можно отнести к различным природным и антропогенным источникам: Al, Ti, Cr, Fe и Ni – выветривание почв и горных пород; Fe, Co, Ni, Cu и As – выбросы металлургических предприятий и угольных ТЭС; W, Bi, Zn и Mo – тяжелая металлургическая и машиностроительная промышленность; Cu, Cd, Sn и Pb – выбросы автомобильного и железнодорожного транспорта, а также износ металлических деталей и конструкций; Sn и Sb – износ тормозных колодок и шин, выбросы промышленных предприятий; Hg – выветривание почв и горных пород.
- Ключевые слова
- загрязнение источники промышленные выбросы выбросы автотранспорта геоэкология гумификация
- Дата публикации
- 16.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 3
Библиография
- 1. Ермолин М.С., Иванеев А.И., Бржезинский А.С., Карандашев В.К., Мохов А.В., Федотов П.С. (2022). Антропогенный источник золота в московской городской пыли. Журнал аналитической химии. 77(10), 956–966.
- 2. Ермолин М.С., Федотов П.С., Карандашев В.К, Дженлода Р.Х., Иванеев А.И., Буркат Т.В., Буркат В.С. (2020). Фракционирование, характеризация и анализ нано- и микрочастиц при оценке вклада металлургического предприятия в загрязнение городской пыли. Журнал аналитической химии. 75(9), 844–853.
- 3. Котельникова А.Д., Рогова О.Б., Столбова В.В. (2021). Лантаноиды в почве: поступление, содержание, влияние на растения, генотоксичность (обзор). Почвоведение. (1), 100–119.
- 4. Ладонин Д.В. (2018). Элементы платиновой группы в почвах и уличной пыли юго-восточного административного округа г. Москвы. Почвоведение. 3, 274–283.
- 5. Acosta J.A., Gabarrón M., Faz A., Martínez-Martínez S., Zornoza R., Arocena J.M. (2015). Influence of population density on the concentration and speciation of metals in the soil and street dust from urban areas. Chemosphere. 134, 328–337. https://doi.org/10.1016/j.chemosphere.2015.04.038
- 6. Adachi K., Tainosho Y. (2004). Characterization of heavy metal particles embedded in tire dust. Environ. Int. 30(8), 1009–1017. https://doi.org/10.1016/J.ENVINT.2004.04.004
- 7. Alexakis D.E. (2020). Contaminated land by wildfire effect on ultramafic soil and associated human health and ecological risk. Land. 9(11), 1–16. https://doi.org/10.3390/land9110409
- 8. Alves C.A., Vicente E.D., Vicente A.M.P., Rienda I.C., Tomé M., Querol X., Amato F. (2020). Loadings, chemical patterns and risks of inhalable road dust particles in an Atlantic city in the north of Portugal. Sci. Total Environ. 737. https://doi.org/10.1016/j.scitotenv.2020.139596
- 9. Awadh S.M., Al-Hamdani J.A.J.M.Z. (2019). Urban geochemistry assessment using pollution indices: a case study of urban soil in Kirkuk, Iraq. Environ. Earth Sci. 78(20). https://doi.org/10.1007/s12665-019-8615-3
- 10. Barjoee S.S., Azizi M., Yazdani M., Alikhani E., Khaledi, A. (2024). Emission source apportionment of the road dust-bound trace and major elements in Najafabad to the west of Isfahan megacity (Iran) based on multivariate receptor-oriented source models of PMF, PCFA and UNMIX. Environ. Dev. Sustain. 26(4), 10333–10366. https://doi.org/10.1007/s10668-023-03149-5
- 11. Birke M., Rauch U. (2000). Urban geochemistry: investigation in Berlin metropolitan area. Environ. Geochem. Health. 22, 233–248. https://doi.org/10.1023/A:1026554308673
- 12. Bisht L., Gupta V., Singh A., Gautam A.S., Gautam S. (2022). Heavy metal concentration and its distribution analysis in urban road dust: A case study from most populated city of Indian state of Uttarakhand. Spat. Spatio-temporal Epidemiol. 40. https://doi.org/10.1016/j.sste.2021.100470
- 13. Bućko M.S., Magiera T., Pesonen L.J., Janus B. (2010). Magnetic, geochemical, and microstructural characteristics of road dust on roadsides with different traffic volumes – case study from Finland. Water. Air. Soil Pollut. 209, 295–306. https://doi.org/10.1007/s11270-009-0198-2
- 14. Candeias C., Vicente E., Tomé M., Rocha F., Ávila P., Alves C. (2020). Geochemical, mineralogical and morphological characterization of road dust and associated health risks. Int. J. Environ. Res. Public Health. 17(5). https://doi.org/10.3390/ijerph17051563
- 15. Cao S., Wen D., Chen X., Duan X., Zhang L., Wang B., Qin N., Wei F. (2022). Source identification of pollution and health risks to metals in household indoor and outdoor dust: A cross-sectional study in a typical mining town, China. Environ. Pollut. 293. https://doi.org/10.1016/j.envpol.2021.118551
- 16. Cappelletti N., Astoviza M., Morrone M., Tatone L. (2019). Urban geochemistry and potential human health risks in the metropolitan area of Buenos Aires: PAHs and PCBs in soil, street dust, and bulk deposition. Environ. Geochem. Health. 41(2), 699–713. https://doi.org/10.1007/s10653-018-0163-3
- 17. Charlesworth S., de Miguel E., Ordóñez A. (2011). A review of the distribution of particulate trace elements in urban terrestrial environments and its application to considerations of risk. Environ. Geochem. Health. 33(2), 103–123. https://doi.org/10.1007/s10653-010-9325-7
- 18. Dehghani S., Moore F., Vasiluk L., Hale B.A. (2018). The geochemical fingerprinting of geogenic particles in road deposited dust from Tehran metropolis, Iran: Implications for provenance tracking. J. Geochem. Explor. 190, 411–423. https://doi.org/10.1016/j.gexplo.2018.04.011
- 19. Dytłow S., Górka-Kostrubiec B. (2021). Concentration of heavy metals in street dust: an implication of using different geochemical background data in estimating the level of heavy metal pollution. Environ. Geochem. Health. 43(1), 521–535. https://doi.org/10.1007/s10653-020-00726-9
- 20. Ermolin M.S., Fedotov P.S., Ivaneev A.I., Karandashev V.K., Fedyunina N.N., Burmistrov A.A. (2018). A contribution of nanoscale particles of road-deposited sediments to the pollution of urban runoff by heavy metals. Chemosphere. 210, 65–75. https://doi.org/10.1016/j.chemosphere.2018.06.150
- 21. Ermolin M.S., Ivaneev A.I., Brzhezinskiy A.S., Fedyunina N.N., Karandashev V.K., Fedotov P.S. (2022). Distribution of platinum and palladium between dissolved, nanoparticulate, and microparticulate fractions of road dust. Molecules. 27(18), 6107. https://doi.org/10.3390/molecules27186107
- 22. Ermolin M.S., Fedotov P.S., Ivaneev A.I., Karandashev V.K., Burmistrov A.A., Tatsy Y.G. (2016). Assessment of elemental composition and properties of copper smelter-affected dust and its nano- and micron size fractions. Environ. Sci. Pollut. Res. 23. https://doi.org/10.1007/s11356-016-7637-6
- 23. Fedotov P.S., Ermolin M.S., Karandashev V.K., Ladonin D.V. (2014). Characterization of size, morphology and elemental composition of nano-, submicron, and micron particles of street dust separated using field-flow fractionation in a rotating coiled column. Talanta. 130, 1–7. https://doi.org/10.1016/J.TALANTA.2014.06.040
- 24. Ferreira-Baptista L., De Miguel E. (2005). Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmos. Environ. 39(25), 4501–4512. https://doi.org/10.1016/j.atmosenv.2005.03.026
- 25. Filippelli G.M., Morrison D., Cicchella D. (2012). Urban geochemistry and human health. Elements. 8(6), 439–444. https://doi.org/10.2113/gselements.8.6.439
- 26. Fujiwara F.G., Gómez D.R., Dawidowski L., Perelman P., Faggi A. (2011). Metals associated with airborne particulate matter in road dust and tree bark collected in a megacity (Buenos Aires, Argentina). Ecol. Indic. 11(2), 240–247. https://doi.org/10.1016/j.ecolind.2010.04.007
- 27. Fussell J.C., Franklin M., Green D.C., Gustafsson M., Harrison R.M., Hicks W., Kelly F.J., Kishta F., Miller M.R., Mudway I.S., Oroumiyeh F., Selley L., Wang M., Zhu Y. (2022). A Review of road traffic-derived non-exhaust particles: emissions, physicochemical characteristics, health risks, and mitigation measures. Environ. Sci. Technol. 56(11), 6813–6835. https://doi.org/10.1021/acs.est.2c01072
- 28. Gaberšek M., Gosar M. (2021). Towards a holistic approach to the geochemistry of solid inorganic particles in the urban environment. Sci. Total Environ. 763. https://doi.org/10.1016/j.scitotenv.2020.144214
- 29. Hanfi M.Y., Seleznev A.A., Yarmoshenko I.V., Malinovsky G., Konstantinova E.Y., Alsafi K.G., Sakr A.K. (2022a). Potentially harmful elements in urban surface deposited sediment of Ekaterinburg, Russia: Occurrence, source appointment and risk assessment. Chemosphere. 307. https://doi.org/10.1016/J.CHEMOSPHERE.2022.135898
- 30. Hanfi M.Y., Seleznev A.A., Yarmoshenko I.V., Malinovsky G., Konstantinova E.Y., Alsafi K.G., Sakr A.K. (2022b). Potentially harmful elements in urban surface deposited sediment of Ekaterinburg, Russia: Occurrence, source appointment and risk assessment. Chemosphere. 307. https://doi.org/10.1016/j.chemosphere.2022.135898
- 31. Haynes H.M., Taylor K.G., Rothwell J., Byrne P. (2020). Characterization of road-dust sediment in urban systems: a review of a global challenge. J. Soils Sediments. 20(12), 4194–4217. https://doi.org/10.1007/s11368-020-02804-y
- 32. Hopke P.K. (2003). Recent developments in receptor modeling. J. Chemom. 17(5), 255–265. https://doi.org/10.1002/cem.796
- 33. Hopke P.K. (2016). Review of receptor modeling methods for source apportionment. J. Air Waste Manage. Assoc. 66(3), 237–259. https://doi.org/10.1080/10962247.2016.1140693
- 34. Hu X., Zhang Y., Luo J., Wang T., Lian H., Ding Z. (2011). Bioaccessibility and health risk of arsenic, mercury and other metals in urban street dusts from a mega-city, Nanjing, China. Environ. Pollut. 159(5), 1215–1221. https://doi.org/10.1016/j.envpol.2011.01.037
- 35. Ivaneev A.I., Brzhezinskiy A.S., Karandashev V.K., Ermolin M.S., Fedotov P.S. (2023). Assessment of sources, environmental, ecological, and health risks of potentially toxic elements in urban dust of Moscow megacity, Russia. Chemosphere. 321. https://doi.org/10.1016/j.chemosphere.2023.138142.
- 36. Jordanova N., Jordanova D., Tcherkezova E., Georgieva B., Ishlyamski D. (2021). Advanced mineral magnetic and geochemical investigations of road dusts for assessment of pollution in urban areas near the largest copper smelter in SE Europe. Sci. Total Environ. 792. https://doi.org/10.1016/j.scitotenv.2021.148402
- 37. Karandashev V.K., Khvostikov V.A., Nosenko S.V., Burmii Zh.P. (2017). Stable Highly Enriched Isotopes in Routine Analysis of Rocks, Soils, Grounds, and Sediments by ICP-MS. Inorg. Mater. 53(14), 1432–1441. https://doi.org/10.1134/S0020168517140084
- 38. Khan M.B., Setu S., Sultana N., Gautam S., Begum B.A., Salam M.A., Jolly Y.N., Akter S., Rahmad M.M., Shil B.C., Afrin Sadea. (2023). Street dust in the largest urban agglomeration: pollution characteristics, source apportionment and health risk assessment of potentially toxic trace elements. Stoch. Environ. Res. Risk Assess. 37(8), 3305–3324. https://doi.org/10.1007/s00477-023-02432-1
- 39. Konstantinova E., Minkina T., Konstantinov A., Sushkova S., Antonenko E., Kurasova A., Loiko S. (2020). Pollution status and human health risk assessment of potentially toxic elements and polycyclic aromatic hydrocarbons in urban street dust of Tyumen city, Russia. Environ. Geochem. Health. 44, 409–432. https://doi.org/10.1007/s10653-020-00692-2
- 40. Konstantinova E., Minkina T., Sushkova S., Konstantinov A., Rajput V.D., Sherstnev A. (2019). Urban soil geochemistry of an intensively developing Siberian city: A case study of Tyumen, Russia. J. Environ. Manage. 239, 366–375. https://doi.org/10.1016/j.jenvman.2019.03.095
- 41. Krishnakumar S., Ramasamy S., Chandrasekar N., Peter T. S., Godson P.S., Gopal V., Magesh N. S. (2017). Spatial risk assessment and trace element concentration in reef associated sediments of Van Island, southern part of the Gulf of Mannar, India. Mar. Pollut. Bull. 115(1–2), 444–450. https://doi.org/10.1016/j.marpolbul.2016.10.067
- 42. Krüger H., Thompson M.S., Kobayashi M., Mangano V., Moroni M., Milillo A., Keller L.P., Sasaki S., Zender J., Domingue D. (2024). Understanding the Dust Environment at Mercury: From Surface to Exosphere. Planet. Sci. J. 5(2). https://doi.org/10.3847/PSJ/ad11f5
- 43. Krupnova T.G., Rakova O.V., Bondarenko K.A., Saifullin A.F., Popova D.A., Potgieter-Vermaak S., Godoi R.H.M. (2021). Elemental composition of PM2.5 and PM10 and health risks assessment in the industrial districts of Сhelyabinsk, south Ural region, Russia. Int. J. Environ. Res. Public Health. 18(23). https://doi.org/10.3390/ijerph182312354
- 44. Krupnova T.G., Rakova O.V., Gavrilkina S.V., Antoshkina E.G., Baranov E.O., Yakimova O.N. (2020). Road dust trace elements contamination, sources, dispersed composition, and human health risk in Chelyabinsk, Russia. Chemosphere. 261. https://doi.org/10.1016/j.chemosphere.2020.127799
- 45. Liang S.Y., Cui J.L., Bi X.Y., Luo X.S., Li X.D. (2019). Deciphering source contributions of trace metal contamination in urban soil, road dust, and foliar dust of Guangzhou, southern China. Sci. Total Environ. 695. https://doi.org/10.1016/j.scitotenv.2019.133596
- 46. Marín-Sanleandro P., Delgado-Iniesta M.J., Sáenz-Segovia A.F., Sánchez-Navarro A. (2024). Spatial identification and hotspots of ecological risk from heavy metals in urban dust in the city of Cartagena, SE Spain. Sustainability (Switzerland). 16(1). https://doi.org/10.3390/su16010307
- 47. Mesquita G.S., Passos E.A., Oliveira S.S., Queiroz A.F.S., Soares S.A.R., Araujo R.G.O. (2024). Geochemical base for As, Co, Cu, Ni, P, Pb, S, V and Zn in road dust collected in areas of oil industry activity in the Metropolitan Region of Salvador, Bahia, Brazil. Microchem. J. 200. https://doi.org/10.1016/j.microc.2024.110304
- 48. Moskovchenko D., Pozhitkov R., Soromotin A., Tyurin V. (2022). The content and sources of potentially toxic elements in the road dust of Surgut (Russia). Atmosphere. 13(1). https://doi.org/10.3390/atmos13010030
- 49. Moskovchenko D., Pozhitkov R., Ukarkhanova D. (2022a). Geochemistry of street dust in Tyumen, Russia: influence of traffic load. Environ. Sci. Pollut. Res. 29(21), 31180–31197. https://doi.org/10.1007/s11356-021-18013-0
- 50. Moskovchenko D., Pozhitkov R., Ukarkhanova, D. (2022b). Geochemistry of street dust in Tyumen, Russia: influence of traffic load. Environ. Sci. Pollut. Res. 29(21), 31180–31197. https://doi.org/10.1007/s11356-021-18013-0
- 51. Mostafa M.T., El-Nady H., Gomaa R.M., Abdelgawad H.F., Abdelhafiz M.A., Salman S.A.E., Khalifa I.H. (2024a). Urban geochemistry of heavy metals in road dust from Cairo megacity, Egypt: enrichment, sources, contamination, and health risks. Environ. Earth Sci. 83(1). https://doi.org/10.1007/s1266502311342y
- 52. Mostafa M.T., El-Nady H., Gomaa R.M., Abdelgawad H.F., Abdelhafiz M.A., Salman S.A.E., Khalifa I.H. (2024b). Urban geochemistry of heavy metals in road dust from Cairo megacity, Egypt: enrichment, sources, contamination, and health risks. Environ. Earth Sci. 83(1). https://doi.org/10.1007/s12665-023-11342-y
- 53. Muller G. (1969). Index of geoaccumulation in sediments of the Rhine River. GeoJournal. 2, 108–118.
- 54. Navarro-Ciurana D., Corbella M., Meroño D. (2023). Effects of road dust particle size on mineralogy, chemical bulk content, pollution and health risk analyses. Int. J. Environ. Res. Public Health. 20(17). https://doi.org/10.3390/ijerph20176655
- 55. Onuchin A., Kofman G., Zubareva O., Danilova I. (2020). Using an urban snow cover composition – based cluster analysis to zone Krasnoyarsk town (Russia) by pollution level. Pol. J. Environ. Stud. 29(6), 4257–4267. https://doi.org/10.15244/pjoes/118168
- 56. Osipova N.A., Filimonenko K.A., Talovskaya A.V., Yazikov E.G. (2015). Geochemical Approach to human health risk assessment of inhaled trace elements in the vicinity of industrial enterprises in Tomsk, Russia. Hum. Ecol. Risk Assess. 21(6), 1664–1685. https://doi.org/10.1080/10807039.2014.972912
- 57. Padhye L.P., Jasemizad T., Bolan S., Tsyusko O.V., Unrine J.M., Biswal B.K., Balasubramanian R., Zhang Y., Zhang T., Zhao J., Yang L., Rinklebe J., Wang H., Siddique K.H.V., Bolan N. (2023). Silver contamination and its toxicity and risk management in terrestrial and aquatic ecosystems. Sci. Total Environ. 871. https://doi.org/10.1016/J.SCITOTENV.2023.161926
- 58. Rajaram B.S., Suryawanshi P.V., Bhanarkar A.D., Rao C.V.C. (2014). Heavy metals contamination in road dust in Delhi city, India. Environ. Earth Sci. 72(10), 3929–3938. https://doi.org/10.1007/s12665-014-3281-y
- 59. Rimashevskaya A.A., Muchkina E.Y., Sutormin O.S., Chuyashenko D.E., Gareev A.R., Tikhnenko S.A., Rimatskya N.V., Kratasyuk V.A. (2024). Bioluminescence inhibition bioassay for estimation of snow cover in urbanised areas within boreal forests of Krasnoyarsk City. Forests. 15(8). https://doi.org/10.3390/f15081325
- 60. Rudnick R.L., Gao S. (2014). Composition of the continental сrust. Treatise on Geochemistry: Second Edition. 4, 1–51. https://doi.org/10.1016/B978-0-08-095975-7.00301-6
- 61. Sezgin N., Nadeem I., El Afandi G. (2022). Environmental pollution assessment of trace metals in road dust of Istanbul in Turkey. Earth Syst. Environ. 6(1), 189–198. https://doi.org/10.1007/s41748-021-00271-0
- 62. Sutherland R.A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ. Geol. 39(6), 611–627. https://doi.org/10.1007/S002540050473/METRICS
- 63. Szczepanik D.M., Poczta P., Talianu C., Böckmann C., Ritter C., Stefanie H., Toanca F., Chojnicki B.H., Schüttemeyer D., Stachlewska I.S. (2023). Spatio-temporal evolution of long-range transported mineral desert dust properties over rural and urban sites in Central Europe. Sci. Total Environ. 903. https://doi.org/10.1016/j.scitotenv.2023.166173
- 64. Tang R., Ma K., Zhang Y., Mao Q. (2013). The spatial characteristics and pollution levels of metals in urban street dust of Beijing, China. Appl. Geochem. 35, 88–98. https://doi.org/10.1016/j.apgeochem.2013.03.016
- 65. Thorpe A., Harrison R.M. (2008). Sources and properties of non-exhaust particulate matter from road traffic: A review. Sci. Total Environ. 400(1–3), 270–282. https://doi.org/10.1016/j.scitotenv.2008.06.007
- 66. Thurston G.D., Spengler J.D. (1985). A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston. Atmos. Environ. (1967–1989). 19(1), 9–25. https://doi.org/10.1016/0004-6981 (85)90132-5
- 67. Vaiškūnaitė R., Jasiūnienė V. (2020). The analysis of heavy metal pollutants emitted by railway transport. Transport. 35(2), 213–223. https://doi.org/10.3846/TRANSPORT.2020.12751
- 68. Varol M., Sünbül M.R., Aytop H., Yılmaz C.H. (2020). Environmental, ecological and health risks of trace elements, and their sources in soils of Harran Plain, Turkey. Chemosphere. 245. https://doi.org/10.1016/j.chemosphere.2019.125592
- 69. Vlasov D., Kosheleva N., Kasimov N. (2021). Spatial distribution and sources of potentially toxic elements in road dust and its PM10 fraction of Moscow megacity. Sci. Total Environ. 761. https://doi.org/10.1016/j.scitotenv.2020.143267
- 70. Vlasov D., Ramírez O., Luhar A. (2022). Road dust in urban and industrial environments: sources, pollutants, impacts, and management. Atmosphere. 13(4), 1–10. https://doi.org/10.3390/atmos13040607
- 71. Yu Y., Li Y., Li B., Shen Z., Stenstrom M.K. (2016). Metal enrichment and lead isotope analysis for source apportionment in the urban dust and rural surface soil. Environ. Pollut. 216, 764–772. https://doi.org/10.1016/j.envpol.2016.06.046
- 72. Yuanan H., He K., Sun Z., Chen G., Cheng H. (2020). Quantitative source apportionment of heavy metal(loid)s in the agricultural soils of an industrializing region and associated model uncertainty. J. Hazard. Mater. 391. https://doi.org/10.1016/j.jhazmat.2020.122244
- 73. Zacháry D., Jordan G., Völgyesi P., Bartha A., Szabó C. (2015). Urban geochemical mapping for spatial risk assessment of multisource potentially toxic elements – A case study in the city of Ajka, Hungary. J. Geochem. Explor. 158, 186–200. https://doi.org/10.1016/j.gexplo.2015.07.015
- 74. Zhang H., Zhang F., Song J., Tan M.L., Kung H.K., Johnson V.C. (2021). Pollutant source, ecological and human health risks assessment of heavy metals in soils from coal mining areas in Xinjiang, China. Environ. Res. 202. https://doi.org/10.1016/j.envres.2021.111702
- 75. Zhang Y., Lang J., Cheng S., Li S., Zhou Y., Chen D., Zhang H., Wang H. (2018). Chemical composition and sources of PM1 and PM2.5 in Beijing in autumn. Sci. Total Environ. 630, 72–82. https://doi.org/10.1016/j.scitotenv.2018.02.151
- 76. Zheng L., Tang Q., Fan J., Huang X., Jiang C., Cheng H. (2015). Distribution and health risk assessment of mercury in urban street dust from coal energy dominant Huainan City, China. Environ. Sci. Pollut. Res. 22(12), 9316–9322. https://doi.org/10.1007/s11356-015-4089-3
- 77. Žibret G. (2019). Influences of coal mines, metallurgical plants, urbanization and lithology on the elemental composition of street dust. Environ. Geochem. Health. 41(3), 1489–1505. https://doi.org/10.1007/s10653-018-0228-3