ОНЗ Геохимия Geochemistry International

  • ISSN (Print) 0016-7525
  • ISSN (Online) 3034-4956

ФИЗИКО-ХИМИЧЕСКИЕ ХАРАКТЕРИСТИКИ И ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА БАБИНГТОНИТА

Код статьи
S001675252050027-1
DOI
10.31857/S001675252050027
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 70 / Номер выпуска 5
Страницы
381-391
Аннотация
Проведено комплексное физико-химическое исследование бабингтонита Ca2.0(Fe0.6Mn0.2Mg0.2)Σ1.0Fe1.0Si5O14(OH)1.0 (Херборн, Земля Гессен, Германия) методами порошковой рентгенографии, электронно-зондового микроанализа, спектроскопии инфракрасного поглощения, комбинационного рассеяния света и мёссбауэровской спектроскопии. Методом высокотемпературной калориметрии растворения на микрокалориметре Кальве в расплаве состава 2PbO•B2O3 при T = 973 K впервые определена энтальпия образования из элементов изученного бабингтонита (−6911.6±10.2 кДж/моль). Оценено значение его стандартной энтропии и рассчитаны величины стандартных энтропии и энергии Гиббса образования (338.8±2.0 Дж/(моль·К), −1501.3±2.0 Дж/(моль·К) и −6464.0±10.2 кДж/моль соответственно). Оценены термодинамические константы конечных членов изоморфной серии: бабингтонит Ca2Fe2+Fe3+Si5O14(OH) — манганбабингтонит Ca2Mn2+Fe3+Si5O14(OH): ΔrH°(298.15 K) = −6868.0±10.4 и −6876.9±9.9 кДж/моль, S°(298.15 K) = 341.2±1.8 и 343.9±2.6 Дж/(моль·К), ΔrS°(298.15 K) = −1496.8±1.8 и −1499.0±2.6 Дж/(моль·К), ΔrG°(298.15 K) = −6422.0±10.4 и −6430.0±9.9 кДж/моль соответственно. Рассчитаны поля устойчивости бабингтонита для окислительно-восстановительных условий, определяемых двумя разными буферами – кварц-фаялит-магнетитовым и магнетит-гематитовым, в координатах PH2O − t, а также минеральных ассоциаций бабингтонита в координатах IgPCO2 — IgPO2, характерных для низкоградного метаморфизма и поздних скарновых парагенезисов.
Ключевые слова
бабингтонит манганбабингтонит ИК спектроскопия КР спектроскопия мёссбауэровская спектроскопия микрокалориметрия Кальве энтальпия образования энтропия энергия Гиббса поля устойчивости низкоградный метаморфизм пренит-пумпеллиитовая фация
Дата публикации
16.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
2

Библиография

  1. 1. Брусницын А.И., Старикова Е.В., Чуканов Н.В., Семкова Т.А. (2001) Новые данные о манганбабингтоните. Записки Российского минералогического общества (5), 82–91.
  2. 2. Виноградова Р.А., Плюснина И.И. (1967) Состав, свойства и кристаллохимические особенности минералов изоморфного ряда ферробабингтонит–манганбабингтонит. Вестник Московского университета, Серия 4. Геология (4), 54–67.
  3. 3. Виноградова Р.А., Сычкова В.А., Кабалов Ю.К. (1966) Марганцевый бабингтонит из месторождения Рудный Каскад (Восточный Саян). ДАН СССР 168(2), 434–437.
  4. 4. Габинет М.П., Елисеев Э.Н. (1962) О бабингтоните. Минералогический сборник Львовского университета (16), 430–435.
  5. 5. Горобец Б.С., Рогожин А.А. (2001) Спектры люминесценции минералов. М.: ВИМС, 312 с.
  6. 6. Гриценко Ю.Д., Огородова Л.П., Вигасина М.Ф., Дедушенко С.К., Вяткин С.В., Мельчакова Л.В., Ксенофонтов Д.А. (2023) Физико-химические характеристики железо-содержащего лазулита из гранитных пегматитов Патомского нагорья, Иркутская область. Новые данные о минералах 57(3), 63–73.
  7. 7. Золотухин В.В., Васильев Ю.Р., Смекалин А.Г., Бакуменко И.Т. (1967) Бабингтонит-пренит-пумпеллиитовая парагенетическая ассоциация в метасоматитах Норильска. Материалы по генетической и экспериментальной минералогии. Т. 5. Новосибирск: Наука, 218–251.
  8. 8. Киселева И.А. (1976) Термодинамические свойства и устойчивость пиропа. Геохимия (6), 845–854.
  9. 9. Киселева И.А., Огородова Л.П., Топор Н.Д., Чигарева О.Г. (1979) Термохимическое исследование системы СаО–MgO–SiO2. Геохимия (12), 1811–1825.
  10. 10. Косой А.Л. (1975) Структура бабингтонита. Кристаллография 20(4), 730–739.
  11. 11. Минералы (1981) Минералы. Т. III. Вып 2. Силикаты с линейными трехчленными группами, кольцами и цепочками кремнекислородных тетраэдров. Ред. академик Ф.В. Чухров. М.: Наука, 1981. 613 с.
  12. 12. Накамото К. (1991) ИК спектры и спектры КР неорганических и координационных соединений. М.: Мир, 536 с.
  13. 13. Огородова Л.П., Киселева И.А., Мельчакова Л.В. (2005) Термодинамические свойства биотита. Журнал физической химии (9), 1569–1572.
  14. 14. Огородова Л.П., Киселева И.А., Мельчакова Л.В., Шурига Т.Н. (2009) Энтальпия образования природных аннита и биотита. Геохимия (1), 109–112.
  15. 15. Ogorodova L.P., Kiseleva I.A., Melchakova L.V., Shuriga T.N. (2003) Formation enthalpy of natural annite and biotite. Geochem. Int. 9(47), 105–108.
  16. 16. Огородова Л.П., Киселева И.А., Мельчакова Л.В., Вигасина М.Ф., Спиридонов Э.М. (2011) Калориметрическое определение энтальпии образования пирофиллита. Журнал физической химии (9), 1609–1611.
  17. 17. Рябов В.В., Золотухин В.В. (1977) Минералы дифференцированных траппов. Новосибирск: Наука, 392 с.
  18. 18. Спиридонов Э.М. (1989) Метаморфические и метасоматические образования Горного Крыма. Геологическое строение Качинского поднятия Горного Крыма.T.II. M.: МГУ, 136–152.
  19. 19. Спиридонов Э.М., Ладыгин В.М., Симонов О.Н., Кулагов Э.А., Середа Е.В., Степанов В.К. (2000) Метавулканиты пренит-пумпеллиитовой и цеолитовой фаций трапповой формации Норильского района Сибирской платформы. М.: МГУ, 212 с.
  20. 20. Спиридонов Э.М., Гриценко Ю.Д. (2009) Эпигенетический низкоградный метаморфизм и Co-Ni-Sb-As минерализация в Норильском рудном поле. М.: Научный мир. 218 с.
  21. 21. Чуканов Н.В., Пеков И.В. (2012) Инфракрасная спектроскопия кислых солей. I. Минералы класса силикатов. Записки Российского минералогического общества CXLI (3), 129–143.
  22. 22. Akasaka M., Kimura T., Nagashima M. (2013) X-ray Rietveld and 57Fe Mössbauer study of babingtonite from Kouragahama, Shimane Peninsula, Japan. J. Mineral. Petrol. Sci. 108, 121–130.
  23. 23. Amthauer G. (1980) 57Fe Mössbauer study of babingtonite. Am. Mineral. 63, 157–162.
  24. 24. Amthauer G., Rossman G.R. (1984) Mixed valence of iron in minerals with cation clusters. Phys. Chem. Minerals 11, 37–51.
  25. 25. Araki T., Zoltai T. (1972) Crystal structure of babingtonite. Z. Kristallogr. 135, 355–375.
  26. 26. Burns R.G., Dyar M.D. (1991) Crystal chemistry and Mӧssbauer spectra of babingtonite. Am. Mineral. 76, 892–899.
  27. 27. Сhukanov N.V. (2014) Infrared Spectra of Mineral Species: Extended Library. Dordrecht: Springer, 1726 p.
  28. 28. Czank M. (1981) Chain periodicity faults in babingtonite, Ca2Fe2+Fe3+H[Si5O15]. Acta Cryst. A37, 617–620.
  29. 29. Dowty E. (1987а) Vibrational interactions of tetrahedra in silicate glasses and crystals: I. Calculations on ideal silicate–aluminate–germanate structural units. Phys. Chem.Minerals 14, 80–93.
  30. 30. Dowty E. (1987б) Vibrational interactions of tetrahedra in silicate glasses and crystals: II. Calculations on melilites, pyroxenes, silica polymorphs and feldspars. Phys. Chem.Minerals 14, 122–138.
  31. 31. Fritsch S., Navrotsky A. (1996) Thermodynamic properties of manganese oxides. J. Am. Ceram. Soc. 79(7), 1761–1768.
  32. 32. Holland T.J.B. (1989) Dependence of entropy on volume for silicate and oxide minerals: A review and a predictive model. Am. Mineral. 74, 5–13.
  33. 33. Jacobsen S.D., Smyth J.R., Swope R.J., Sheldon R.I. (2000) Two proton position in the very strong hydrogen bond of serandite, NaMn2Si3O8(OH). Am. Mineral. 85, 745–752.
  34. 34. Liebau F. (1980) The role of cationic hydrogen in pyroxenoidcrystal chemistry. Am. Mineral. 65, 981–985.
  35. 35. Nagashima M., Mitani K., Akasaka M. (2014) Structural variation of babingtonite depending on cation distribution at the octahedral sites. J. Mineral. Petrol. 108, 287–301.
  36. 36. Nagashima M., Nishio-Hamane D., Matsumoto T., Fukuda C. (2022) The role of scandium substitution in babingtonite. Minerals 12, (3), 333.
  37. 37. Navrotsky A., Coons.W.J. (1976) Thermochemistry of some pyroxenes and related compounds. Geochim. Cosmochim. Acta 40, 1281–1295.
  38. 38. Ogorodova L.P., Melchakova L.V., Kiseleva I.A., Belitsky I.A. (2003) Thermochemical study of natural pollucite. Thermochim. Acta 403, 251–256.
  39. 39. Ogorodova L.P., Melchakova L.V., Kiseleva I.A., Peretyazhko I.S. (2012) Thermodynamics of natural tourmalines – dravite and schorl. Thermochim. Acta 539, 1–5.
  40. 40. Ogorodova L., Vigasina M., Melchakova L., Rusakov V., Kosova D., Ksenofontov D., Bryzgalov I. (2017) Enthalpy of formation of natural hydrous iron phosphate: vivianite. J. Chem. Thermodyn. 110, 193–200.
  41. 41. Philpotts A.R. (1990) Principles of igneous and metamorphic petrology. New Jersey: Prentice Hall, 498 p.
  42. 42. Robie R.A., Hemingway B.S. (1995) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures. U. S. Geol. Surv. Bull. 2131, 461 p.
  43. 43. Robie R.A., Evans H.T., Hemingway B.S. (1988) Thermophysical properties of ilvaite CaFe2+2Fe3+Si2O7O(OH); heat capacity from 7 to 920 K and thermal expansion between 298 and 856 K. Phys. Chem. Miner. 15(4), 390–397.
  44. 44. Tagai T., Joswig W., Fuess H. (1990) Neutron diffraction study of babingtonite at 80 K. Minerals 15, 8–18.
  45. 45. Wise W.S., Möller W.P. (1990) Occurence of Ca-Fe silicate minerals with zeolites in basalt cavities at Bombay, India. Eur. J. Mineral. 2, 875–883.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека